Problema 672, propuesto por Julio A. Miranda Ubaldo, Perú:

Dado un triángulo ABC, sea D el punto medio de AC. Tenemos que $\angle ABD = 50^{\circ}$ y $\angle BCD = 40^{\circ}$. Hallar $\angle DBC$.

Solución de Bruno Salgueiro Fanego, Viveiro, Lugo:

Sea $\theta = \angle DBC$. La suma de los ángulos interiores de ABC es 180°, luego $\angle CAB = 90^{\circ} - \theta$.

Por el teorema de los senos en
$$ABD$$
 y BCD , $\frac{AD}{\sin 50^{\circ}} = \frac{BD}{\sin \left(90^{\circ} - \theta\right)}$ y $\frac{DC}{\sin \theta} = \frac{BD}{\sin 40^{\circ}}$. Como

$$AD = DC$$
, es $\frac{\sin 50^{\circ}}{\cos \theta} = \left(\frac{AD}{BD} = \frac{DC}{BD} = \right) \frac{\sin \theta}{\sin 40^{\circ}}$, luego $\sin \theta \cos \theta = \sin 40^{\circ} \cos 40^{\circ}$, o sea,

$$\frac{1}{2}\operatorname{sen}(2\theta) = \frac{1}{2}\operatorname{sen}80^{\circ} \quad \text{y} \quad \text{como} \quad 90^{\circ} - \theta = \angle CAB > 0^{\circ} \Rightarrow 2\theta < 180^{\circ}, \quad \text{resulta} \quad \theta \in \left\{40^{\circ}, 50^{\circ}\right\}.$$

Ambos casos son posibles; el caso $\theta = 40^{\circ}$ corresponde a un triángulo rectángulo en B y el caso $\theta = 50^{\circ}$ a un triángulo isósceles con ángulo en el vértice B igual a 100° .