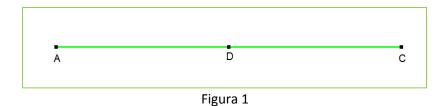
Problema 672.


Dado un triángulo ABC, sea D el punto medio de AC. Tenemos que <ABD=50° y <BCD=40°. Hallar <DBC.

Anónimo

Solución de Fabiola Czwienczek, profesora de Matemática (jubilada). Turmero, Venezuela.

Aprovecharemos las herramientas que nos proporciona Cabri II y construiremos un triángulo ABC tal que <ABD=50 $^{\circ}$ y <BCD=40 $^{\circ}$, siendo D el punto medio de \overline{AC} .

En primer lugar, tracemos el segmento \overline{AC} y marquemos su punto medio D (figura 1).

La pregunta ahora es: ¿cómo determinar el vértice B?. Nótese que:

- 1) Como <ABD=50º, <u>B pertenece a un arco capaz del segmento AD</u> de ángulo 50°.
- 2) Como <BCD= 40° , B pertenece a una semirrecta \overrightarrow{CE} tal que <ECD= 40° .

Esto es, B es un punto de intersección de los dos lugares geométricos descritos: el arco capaz y la semirrecta. Construyamos ambos lugares geométricos en el semiplano superior con respecto a la recta \overrightarrow{AC} . En la figura 2 se muestra el arco capaz del segmento \overline{AD} de ángulo 50°.

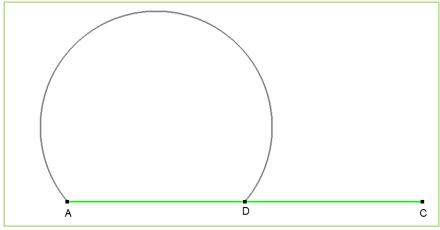
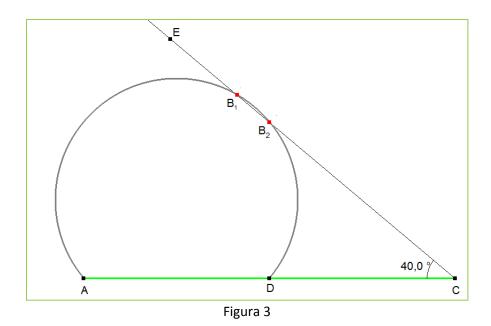



Figura 2

En la figura 3 vemos que, una vez construida la semirrecta \overrightarrow{CE} tal que <ECD=40º, tenemos dos puntos de intersección de dicha semirrecta con el arco capaz del segmento \overline{AD} de ángulo 50°. Los hemos denotado por B₁ y B₂. Evaluemos la situación en cada caso.

Considerando el punto $B_1 = B$.

En este caso, **<DBC = 40°** (figura 4). Tenemos, así, que el triángulo dado es rectángulo con ángulo recto en el vértice B. Otro detalle interesante es que AD = DC = BD.

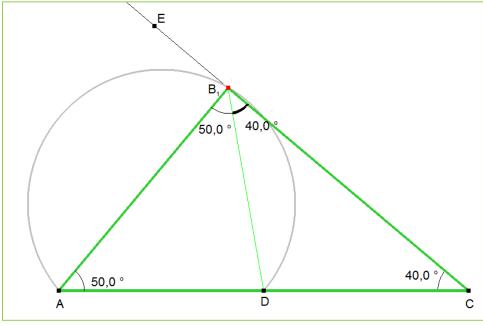


Figura 4

Considerando el punto $B_2 = B$

En este caso, **PBC** = **50°** (figura 5). Tenemos que el triángulo dado es isósceles, con AB = BC y B pertenece a la mediatriz del segmento \overline{AC} .

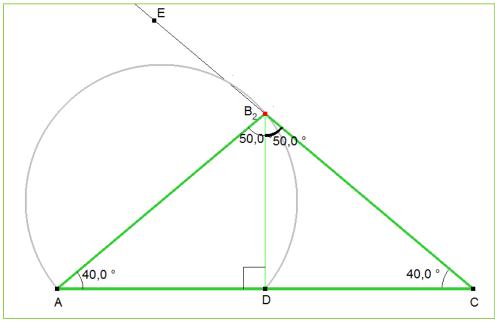


Figura 5