Propuesto por Julio A. Miranda Ubaldo, profesor de la Academia San Isidro (Huaral), de Perú

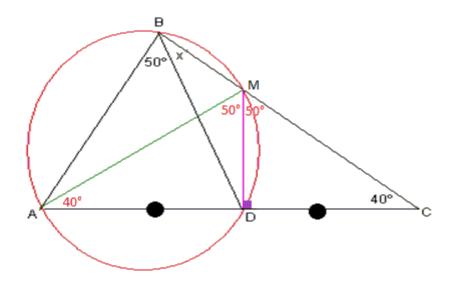
Problema 672

Dado un triángulo ABC, sea D el punto medio de AC. Tenemos que <ABD=50° y <BCD=40°. Hallar <DBC.

Anónimo

Solución de Julio A. Miranda Ubaldo, profesor de la Academia San Isidro (Huaral), de Perú.

Primera Solución:

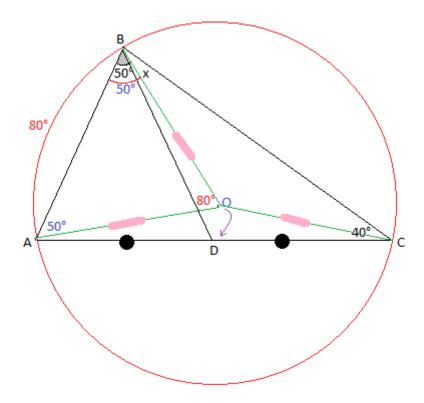


Desde D trazo la mediatriz DM (M en BC).

Unamos A con M , por la propiedad de la mediatriz AM = MC por lo tanto m<MAC = 40° y m<AMD = 50° .

Se observa que el cuadrilátero ABMD es inscriptible debido a que: $m < ABD = m < AMD = 50^{\circ}$. Luego en el mismo cuadrilátero: $x = 40^{\circ}$.

Se demuestra asi mismo que el triangulo ABC es rectángulo (recto en B).



Ubicamos el circuncentro "O" del \triangle ABC, en el interior del mismo (puede estar en el exterior), luego por la propiedad del circuncentro OA = OB = OC.

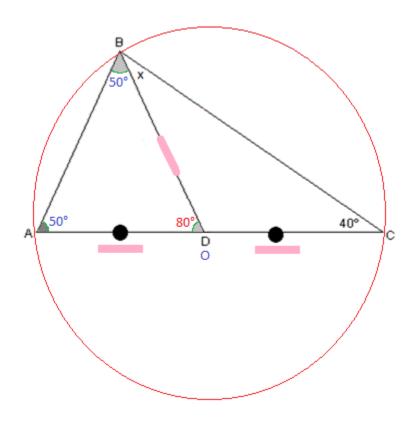
Entonces en la circunferencia m AB = 80° y m<BOA = 80° (por ángulo central)

En el \triangle ABO : m<OAB = m<ABO = 50°.

Sin embargo observemos que m<ABD = 50°.

De la figura se nota claramente que m<ABO ≠ m<ABD ¡¡¡¡¡¡¡.

Para solucionar la contradicción : m<OBD = 0°, para lograrlo hacemos coincidir O y D obteniéndose la siguiente figura:

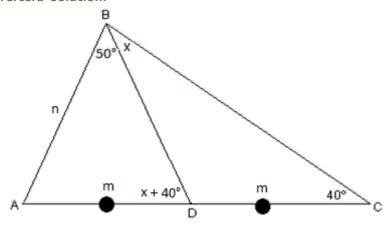


Como D es ahora el circuncentro del $\triangle ABC$: DA = DB = DC.

Además : m<BAD = 50° y m<BDA = 80°

Por lo tanto en el $\triangle BCD : x = 40^{\circ}$

Tercera Solución:



Hagamos AD = DC = m y AB = n En el \triangle ABD , m <D = 40° + x y por la ley de los senos:

$$\frac{n}{sen(40^{\circ}+x)} = \frac{m}{sen50^{\circ}} \quad \text{Entonces} : \quad \frac{n}{m} = \frac{sen(40^{\circ}+x)}{sen50^{\circ}} \quad \dots \dots (1)$$

En el ΔABC por la ley de los senos

$$\frac{n}{sen40^{\circ}} = \frac{2m}{sen(50^{\circ} + x)} \text{ Entonces}: \qquad \frac{n}{m} = \frac{2sen40^{\circ}}{sen(50^{\circ} + x)} \quad(2)$$

Igualando (1) y (2)

$$\frac{sen(40^{\circ}+x)}{sen50^{\circ}} = \frac{2sen40^{\circ}}{sen(50^{\circ}+x)}$$

Resolviendo esta expresión trigonométrica:

$$sen(40^{\circ} + x)sen(50^{\circ} + x) = 2sen40^{\circ}.sen50^{\circ}$$

 $sen(40^{\circ} + x)cos(40^{\circ} - x) = 2sen40^{\circ}.cos40^{\circ}$

$$sen(40^{\circ} + x)cos(40^{\circ} - x) = sen80^{\circ}$$

Es fácil darse cuenta que x = 40°