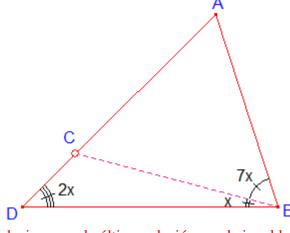
Problema 674

Tenemos un triángulo ABD tal que hay un punto C interior al lado AD, con <CBA=7x, <CBD=x; <ADB=2x. Hallar x. (Anónimo.)

Propuesto por Julio A. Miranda Ubaldo, profesor de la Academia San Isidro (Huaral), de Perú

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Sea dado el triángulo ABC y sean marcados los ángulos <CBA=7x, <CBD=x; <ADB=2x.



A continuación haremos uso repetido del Teorema de los Senos:

- * En el triángulo BCA $\rightarrow \frac{AC}{sen7x} = \frac{BC}{sen10x}$
- * En el triángulo BCD $\rightarrow \frac{CD}{senx} = \frac{BC}{sen2x}$
- * En el triángulo ABD $\rightarrow \frac{AD}{sen8x} = \frac{BD}{sen10x}$

Relacionamos la última relación con la igualdad: AD= AC+CD

$$\frac{AD}{sen8x} = \frac{BD}{sen10x}; \quad AD = AC + CD = \frac{BC.sen7x}{sen10x} + \frac{BC.senx}{sen2x}$$

$$\frac{BC.sen7x}{sen10x} + \frac{BC.senx}{sen2x} = \frac{BD}{sen10x}$$

$$\frac{BC}{BD} \cdot \left(\frac{sen7x}{sen10x} + \frac{senx}{sen2x} \right) = \frac{1}{sen10x} \quad (I)$$

Por otro lado, en el triángulo BCD→

$$\frac{BC}{BD} = \frac{sen2x}{sen3x} \quad (II)$$

De las relaciones (I) y (II), obtenemos la siguiente relación:

$$\frac{sen2x}{sen3x} \left(\frac{sen7x}{sen10x} + \frac{senx}{sen2x} \right) = \frac{1}{sen10x}; \frac{sen7x.sen2x}{sen10x.sen3x} + \frac{senx}{sen3x} = \frac{1}{sen10x}$$

$$\frac{sen7x.sen2x}{sen3x} + \frac{sen10x.senx}{sen3x} = 1; \qquad sen7x.sen2x + sen10x.senx = sen3x$$

$$-\frac{1}{2}(\cos 9x - \cos 5x) - \frac{1}{2}(\cos 11x - \cos 9x) = sen3x; \quad \underbrace{-\frac{1}{2}(\cos 11x - \cos 5x)}_{\text{enco}} = sen3x$$

$$sen8x.sen3x = sen3x$$
 $(sen3x \neq 0);$ $sen8x = 1 \Rightarrow 8x = \frac{\pi}{2} \Rightarrow x = \frac{\pi}{16}$

