Problema 677, propuesto por Julio A. Miranda Ubaldo, Perú:

En el triángulo ABC, tenemos D sobre el interior del lado AC con DC = AB. Es también $\angle ABD = \angle BCA = 30^{\circ}$. Hallar $\angle BAC$.

Solución de Bruno Salgueiro Fanego, Viveiro, Lugo:

Los triángulos ABC y ADB tienen dos ángulos respectivamente iguales (el ángulo en el vértice A y el ángulo de 30°), luego son semejantes y, por tanto, sus lados tienen longitudes directamente proporcionales; en particular, $\frac{AB}{AD} = \frac{AC}{AB}$, es decir, $AB^2 = (AC - DC)AC$, luego, al ser DC = AB, resulta que $AB^2 + AC \cdot AB - AC^2 = 0$ y, por tanto, $AB = \frac{1}{2} \left(-AC \pm \sqrt{AC^2 + 4AC^2} \right)$, con lo cual $2AB = \left(\sqrt{5} - 1 \right)AC$. Del teorema de los senos en el triángulo ABC, se deduce que $\frac{BC}{\text{sen} \angle BAC} = \frac{AB}{\text{sen} 30^\circ}$ y que $\frac{BC}{AC} = \frac{\text{sen} \angle BAC}{\text{sen} \angle CBA}$; así, $\frac{BC}{AC} = \frac{BC}{2AB} = \frac{BC}{\left(\sqrt{5} - 1 \right)AC} = \frac{\sqrt{5} + 1}{4} \frac{\text{sen} \angle BAC}{\text{sen} \angle CBA}$, luego $\frac{ABC}{AC} = \frac{\sqrt{5} + 1}{4}$, siendo entonces $\frac{ABC}{AC} = \frac{AB}{AC} = \frac{AB}{AC$