Problema 677

Problema 677

En el triángulo \overrightarrow{ABC} , tenemos D sobre el interior del lado \overrightarrow{AC} con $\overrightarrow{DC} = \overrightarrow{AB}$. Es también $\angle ABD = \angle BCA = 30^{\circ}$. Hallar $\angle BAC$.

Anónimo

Solución Ricard Peiró:

Sea
$$\overline{DC} = \overline{AB} = c$$
.

Sea
$$\alpha = \angle BAC$$

Sea DE la paralela al lado AB.

$$\angle EDC = \angle BAC = \alpha$$
, $\angle ABD = \angle BCA = 30^{\circ}$.

Entonces, los triángulos BDA, CDE son iguales.

Sea
$$x = \overline{BD} = \overline{CE}$$
, $y = \overline{AD} = \overline{DE}$.

Los triángulos $\stackrel{\triangle}{\mathsf{ABC}}$, $\stackrel{\triangle}{\mathsf{DEC}}$ son semejantes. Aplicando el teorema de Tales:

$$\frac{c+y}{c} = \frac{c}{y}.$$

$$\frac{c}{y} = \frac{1+\sqrt{5}}{2} = \Phi.$$

Sea
$$\beta = \angle DEC$$
.

Aplicando el teorema de los senos al triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{CDE}}$:

$$\frac{c}{sin\beta} = \frac{y}{sin30^o} \; .$$

$$\sin \beta = \frac{c}{v} \sin 30^\circ = \frac{\Phi}{2}$$
. Entonces, $\beta = 126^\circ$.

Si
$$\beta = 54^{\circ}$$
, aleshores, $\alpha = \angle BAC = 180^{\circ} - (30^{\circ} + \beta) = 96^{\circ}$.

Si
$$\beta = 126^{o}$$
 , aleshores, $\alpha = \angle BAC = 180^{o} - (30^{o} + \beta) = 24^{o}$.

