Problema 680, propuesto por Julio A. Miranda Ubaldo, Perú:

En un triángulo acutángulo ABC, CF es una altura, con F en AB y BM es una mediana, con M en CA. Dado que BM = CF y $\angle MBC = \angle FCA$, probar que el triángulo ABC es equilátero.

Solución de Bruno Salgueiro Fanego, Viveiro, Lugo:

Sean a = BC, b = CA, c = AB y $\theta = \angle MBC = \angle FCA$. Nótese que, por ser CF una altura, $CF \perp AF$, luego $\angle CFA = \frac{\pi}{2}$, con lo cual F está sobre la circunferencia de diámetro CA, siendo entonces su centro el punto medio de CA, que es M. Por tanto, los puntos C, A y F están situados a la misma distancia (el radio) del centro de dicha circunferencia, es decir, MC = MA = MF.

Además, $\cos\theta = \frac{CF}{CA}$, es decir, $CF = b\cos\theta$. Pero el ángulo central es el doble del asociado a un ángulo inscrito, luego $\angle ACF = \frac{\angle AMF}{2}$, con lo cual $\angle AMF = 2\theta$ y, por tanto, $\angle FMC = \pi - 2\theta$, de donde $\angle CFM = \theta$. Entonces $\angle MBC = \angle FCA = \angle FCM = \angle CFM$, luego el cuadrilátero FBCM es cíclico y, por tanto, $\angle BMC = \angle CFB = \frac{\pi}{2}$. Entonces $\cot\theta = \cot\angle MBC = \frac{BM}{b/2}$.

Pero BM = CF por hipótesis, luego $\frac{b}{2}\cot\theta = BM = CF = b\cos\theta$, con lo cual $\cot\theta = \cos\theta$ y, por ello, $\sin\theta = \frac{1}{2}$, siendo así $\theta = \frac{\pi}{6}$. Entonces $\angle ACB = \frac{\pi}{3}$. Además, $\angle BAC = \frac{\pi}{2} - \angle FCA = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$. Por tanto, el triángulo ABC tiene dos de sus ángulos iguales a $\frac{\pi}{3}$, luego es equilátero.