Propuesto por Julio A. Miranda Ubaldo, profesor del Grupo de Asesoría Matemática Fermat, de Perú

Problema 680

En un triángulo acutángulo ABC, CF es una altura ,con F en AB y BM es una mediana , con M en CA. Dado que: BM = CF y m<MBC = m<FCA, probar que el Δ ABC es equilátero.

OLIMPIADA MATEMATICA BRITANICA Segundo Fase: Martes, 27 de Febrero de 1997

Solución del director.

Tracemos la circunferencia Ω circunscrita a ABC. Sea $U = CF \cap BM$

Sea <BAC $=\alpha$. Es <MBC=<FCA=90- α

Sea T el punto de corte de la recta BM con Ω . Estudiemos el triángulo BTC.

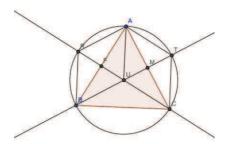
<BTC=<BAC= α por arco capaz, <TBC=<MBC=<ACF=90- α por datos del problema, luego <BCT=<CFA =90.

Así BT es un diámetro de Ω .

<MAT=<CAT=<CBT=<UCA=<FCA= α .

Así los triángulos MAT y MCU son semejantes y al ser MA=MC , son además congruentes. ATCU es rombo, por lo que AC es perpendicular a BT. Además <TBA=<TCA.

Así BM además de ser mediana es altura, bisectriz y mediatriz de BAC.



U es pues el ortocentro de ABC.

Sea por otra parte, $R = CF \cap \Omega$. Es <RBF=<FBU=90- α .

Consideremos ahora que <RBF=<UBF==90- α .

Así al ser BT diámetro debe ser <BCT=90, o sea, <BCT=<BCR+ <UCA + <TCA=90, o bien:

 $90-\alpha + 90-\alpha + 90-\alpha = 90$; 270- $3\alpha = 90$; $3\alpha = 180$, por lo que $\alpha = 90$, cqd.