Propuesto por Julio A. Miranda Ubaldo, profesor del Grupo de Asesoría Matemática Fermat, de Perú

Problema 680

En un triángulo acutángulo ABC, CF es una altura ,con F en AB y BM es una mediana , con M en CA. Dado que: BM = CF y m<MBC = m<FCA, probar que el Δ ABC es equilátero.

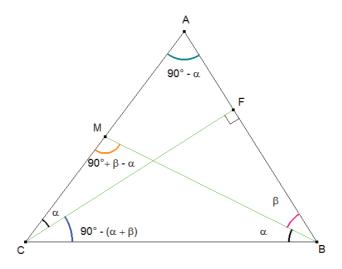
OLIMPIADA MATEMATICA BRITANICA Segundo Fase: Martes, 27 de Febrero de 1997

Solución de Fabiola Czwienczek, profesora de Matemática (jubilada). Turmero, Venezuela.

Tenemos el triángulo acutángulo ABC. \overline{CF} es una altura, con F en \overline{AB} . Luego, m<CFB = m<CFA = 90°. \overline{BM} es una mediana, con M en \overline{CA} . Además, sabemos que BM = CF y que m<MBC = m<FCA. Debemos demostrar que el Δ ABC es equilátero.

Sean m<MBC = α y m<MBA = β , como se muestra en la figura. En consecuencia:

$$m$$
90^{\circ} - \alpha; m 90^{\circ} - (\alpha + \beta); m 90^{\circ} + \beta - \alpha



Del triángulo rectángulo CFB, tenemos que: sen $(\alpha + \beta) = \frac{CF}{CR}$ (1)

Aplicando ley de los senos en el triángulo BCM:

$$\frac{CM}{sen \alpha} = \frac{BM}{sen (90^{\circ} - \beta)} = \frac{CB}{sen (90^{\circ} + \beta - \alpha)}$$
 (2)

De (2) obtenemos que

CB =
$$\frac{BM}{sen (90^{\circ} - \beta)} sen (90^{\circ} + \beta - \alpha)$$
 (3)

Nótese que:

$$sen (90^{\circ} - \beta) = \cos \beta$$

$$sen (90^{\circ} + \beta - \alpha) = cos (\beta - \alpha)$$

BM = CF (por hipótesis)

Sustituyendo estas igualdades en (3), nos queda: $CB = \frac{CF}{\cos \beta} \cos (\beta - \alpha)$ (4)

Sustituyendo (4) en (1): sen
$$(\alpha + \beta) = \frac{CF}{\frac{CF}{\cos \beta} \cos (\beta - \alpha)}$$

Simplificando esta última igualdad, obtenemos:

sen
$$(\alpha + \beta)$$
 cos $(\beta - \alpha)$ = cos β (5)

Transformando en sumas el producto del miembro izquierdo de (5), resulta:

$$\frac{1}{2} (sen 2\beta + sen 2\alpha) = \cos \beta \implies sen 2\beta + sen 2\alpha = 2\cos \beta$$
 (6)

Ahora, apliquemos ley de los senos en el triángulo BMA:

$$\frac{BM}{sen (90^{\circ} - \alpha)} = \frac{AM}{sen \beta}$$
 (7)

De (7): BM =
$$\frac{AM}{sen \beta}$$
 sen (90° - α) \Rightarrow BM = $\frac{AM \cos \alpha}{sen \beta}$ (8)

Por (2), sabemos que: BM =
$$\frac{CM}{sen \alpha} sen (90^{\circ} - \beta)$$
. Esto es: BM = $\frac{CM \cos \beta}{sen \alpha}$. (9)

Igualando (8) y (9) y teniendo en cuenta que AM = CM ya que \overline{BM} es una mediana, con M en \overline{CA} , tenemos:

$$\frac{AM\cos\alpha}{\sin\beta} = \frac{CM\cos\beta}{\sin\alpha}$$

$$\Rightarrow \frac{\cos \alpha}{\sin \beta} = \frac{\cos \beta}{\sin \alpha}$$

 \Rightarrow sen α cos α = sen β cos β

 \Rightarrow sen 2 α = sen 2 β (10)

Sustituyendo (10) en (6) obtenemos:

$$sen 2β + sen 2β = 2 cos β$$

$$\Rightarrow$$
 2 sen 2 β = 2 cos β

$$\Rightarrow$$
 4 sen β cos β = 2 cos β

 \Rightarrow 2 sen β = 1 (<u>nótese que podemos cancelar cos β , ya que cos $\beta \neq 0$, por ser ABC acutángulo</u>)

$$\Rightarrow$$
 sen $\beta = \frac{1}{2}$

$$\Rightarrow \beta = 30^{\circ} \lor \beta = 150^{\circ}$$

Como el triángulo ABC es acutángulo, se descarta la solución β = 150°. En consecuencia, β = 30°. Por tanto, de (10) se deduce que α = 30°. Así, las medidas de los ángulos internos del triángulo ABC son:

$$m < CAB = 90^{\circ} - \alpha = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

$$m$$
\alpha + \beta = 30^{\circ} + 30^{\circ} = 60^{\circ}

$$m < ACB = 90^{\circ} - \beta = 90^{\circ} - 30^{\circ} = 60^{\circ}$$
.

Hemos demostrado que el triángulo ABC es equiángulo. Por tanto, el triángulo ABC es equilátero. QED.