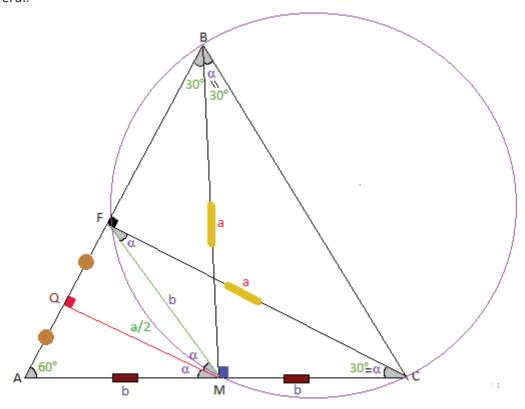
Problema 680

En un triángulo acutángulo ABC, CF es una altura ,con F en AB y BM es una mediana , con M en CA. Dado que: BM = CF y m<MBC = m<FCA, probar que el \triangle ABC es equilátero.

OLIMPIADA MATEMATICA BRITANICA Segundo Fase: Martes, 27 de Febrero de 1997

Solución de Julio A. Miranda Ubaldo, profesor del Grupo de Asesoría Matemática Fermat, de Perú::



En el Δ AFC: unamos F y M , por el teorema de la mediana relativa a la hipotenusa : AM = MC = FM = b. El Δ MFC es isósceles , luego m<MFC = α y m <FMA = 2 α .

El Δ MFC es isósceles luego m<MFC = α y m<FMA = 2α

En el ΔAMF que es isósceles tambien tracemos la altura MQ que es mediatriz, mediana y bisectriz .

En el \triangle AFC : MQ es base media , luego MQ = a/2.

Observando el Δ rectangulo BQM notamos que es un triangulo rectangulo notable (30° - 60°), entonces: m<QBM = 30°.

El cuadrilatero MFBC es inscriptible puesto que: m<MFC = m<MBC = α , luego α = 30°

Por lo tanto en el ΔABC : BM es bisectriz y mediana , entonces: BM es tambien altura y mediatriz.

De esto se deduce que $\,$ m<A = 60° , $\,$ m<B = 60° y $\,$ m<C = 60°

Por lo tanto el AABC es EQUILATERO.