Problema 680

En un triángulo acutángulo \overrightarrow{ABC} , \overrightarrow{CF} es una altura, con F en \overrightarrow{AB} i \overrightarrow{BM} es una mediana, con M en \overrightarrow{CA} . Dado que $\overrightarrow{BM} = \overrightarrow{CF}$ y $\angle MBC = \angle FCA$, probar que el triángulo \overrightarrow{ABC} es equilátero.

Solución de Ricard Peiró:

$$\angle$$
MBC = \angle FCA = 90°-A.

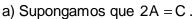
Aplicando el teorema de los senos al triángulo $\stackrel{\triangle}{\mathsf{BCM}}$:

$$\frac{\overline{BM}}{\sin C} = \frac{b}{2\cos A} \tag{1}$$

$$\overline{BM} = b \cdot \sin A$$
 (2)

Substituyendo la 'expresión (2) en la expresión (1):

$$\frac{b \cdot \sin A}{\sin C} = \frac{b}{2\cos A}.$$
$$\sin 2A = \sin C.$$



$$B = 180^{\circ} - 3A$$
.

$$\angle ABM = 90^{\circ}-2A$$
.

Aplicando el teorema de los senos al triángulo BMA:

$$\frac{b}{2 \cdot \cos 2A} = \frac{\overline{BM}}{\sin A} = b$$
$$\cos 2A = \frac{1}{2}.$$

Entonces, $A = 30^{\circ}, C = 60^{\circ}, B = 90^{\circ}$. Lo que contradice la hipótesis que $\stackrel{\triangle}{ABC}$ es acutángulo.

b) Supongamos que
$$2A = 180^{\circ}-C$$
.

$$A + B + C = 180^{\circ}$$
.

Entonces,
$$A = B$$

Entonces,
$$\overline{CF}$$
 es una mediana tal que $\overline{BM} = \overline{CF}$

Por ser isósceles la mediana del vértice A es igual a la mediana \overline{BM} . Las tres medianas son iguales, por tanto el triángulo es equilátero.

