Problema 682

Determinar el coseno del ángulo α de la base de un triángulo isósceles si se sabe que el circuncentro se encuentra en la circunferencia inscrita al triángulo.

Solución:

Sea el triángulo isósceles $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$ $\overline{\mathsf{AC}} = \overline{\mathsf{CB}} = \mathsf{a}$, $\mathsf{AB} = \mathsf{c}$.

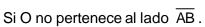
Sea $\alpha = A = B$.

Sea O el circuncentro que pertenece a la circunferencia inscrita.

Supongamos que el circuncentro es el punto medio del lado \overline{AB} .

Entonces $C = 90^{\circ}$ el triángulo ABC es rectángulo y isósceles.

$$\alpha=45^{\circ}\,.\,\,\cos\alpha=\frac{\sqrt{2}}{2}\,.$$



Sea $R = \overline{OC}$ el radio de la circunferencia circunscrita.

$$\overline{OI} = r$$
.

Por el teorema de Euler de la distancia entre el incentro y el circuncentro:

$$\overline{OI} = \sqrt{R^2 - 2Rr}$$
.

Entonces, $r = \sqrt{R^2 - 2Rr}$. Elevando al cuadrado:

$$R^2 - 2rR - r^2 = 0$$
. Resolviendo la ecuación:

$$R = \left(1 + \sqrt{2}\right)r.$$

Sea T el punto de tangencia de la circunferencia inscrita y el lado \overline{BC} . $\angle CIT = \alpha$. Aplicando razones trigonométricas al triángulo rectángulo

$$\cos\alpha = \frac{r}{r+R} \ . \quad \cos\alpha = \frac{r}{r+\left(1+\sqrt{2}\right)r} = \frac{2-\sqrt{2}}{2} \ .$$

