Problema 684.-

TEOREMA DE HARUKI (Llamado tambien por algunos como el Teorema de Micky Mouse)

Dadas tres circunferencias, Σ , Γ y Ω , cada una se interseca con las otras así:

 Ω y Γ en A exterior a Σ , y B interior a Σ

 Σ y Γ en C exterior a Ω , y D interior a Ω

 Ω y Σ en E exterior a Γ , y F interior a Γ

Así se forman tres triángulos ADF, EBD y CBF.

Demostrar que AD EB CF = AF ED CB

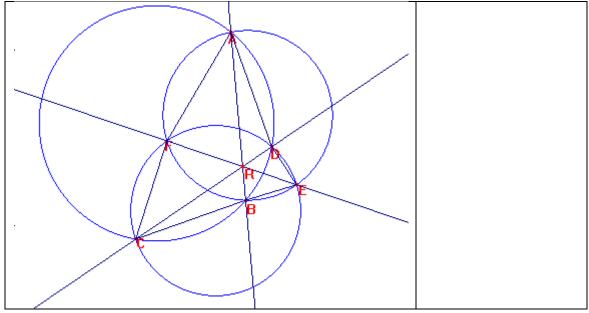
Honsberger, R. "Haruki's Cevian Theorem for Circles." §12.4 in Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 144-146, 1995.

Obtenido de: http://mathworld.wolfram.com/HarukisTheorem.html

Solución del director

Las tres circunferencias tienen un centro radical que dado que se intersecan será el punto de intersección de las tres cuerdas que constituyen entre ellas.

Sea R el centro radical.



Tenemos ER RF= CR RD = AR RB.

Por semejanza de triángulos tenemos las siguientes relaciones:

ARF y ERB

AF/EB=AR /ER = FR/RB

CRF y ERD

ED /CF= ER/CR = RD/ RF

ARD y CRB

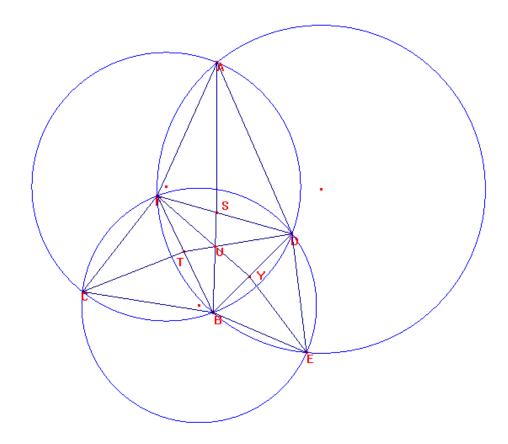
CB/AD = CR/AR = RB/RD.

Así tenemos

 $(AF/EB)^2$ (ED /CF)² (CB/AD)² = (AR /ER)(FR/RB) (ER/CR) (RD/ RF) (CR/AR)(RB/RD)=1 Y así cqd, AF DE CB = EB CF AD.

Nota 1.-

Estudiando la configuración del problema, tomamos los pies de las bisectrices



De FAD, en FD, S, de BED en BD, Y, y de BCF, T en BF, las cevianas FY, DT y BS se cortan en un punto U interior al triángulo BDF.

El motivo es debido a las propiedades de las bisectrices:

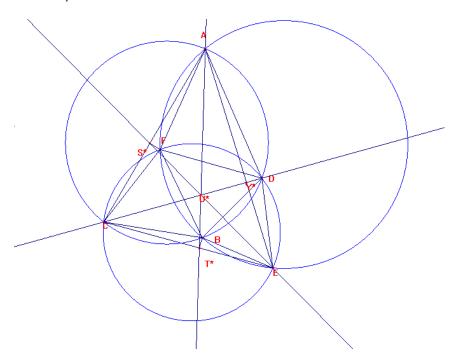
AF/AD= FS/SD; EB/ED=BY/YD; CB/CF= BT/TF

Así, (FS DY BT)/(SD BY TF)= (AF ED CB)/(AD EB CF)=1

Luego las cevianas se cortan en U.

Nota 2.-

Tomamos ahora los pies de las bisectrices de ADE, en AE, Y*, de EBC, sobre EC, T*, y de CFA sobre CA, S*.

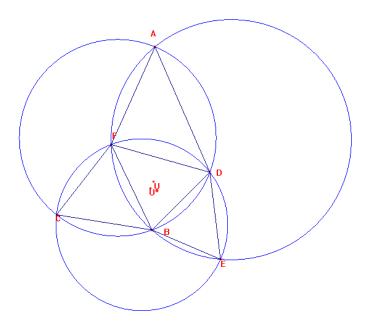


AD/DE =AY*/EY*; EB/BC=ET*/CT*, CF/FA = CS*/AS*

De donde:

(AY* ET* CS*)/(EY* CT* AS*)= (AD EB CF)/(DE EB FA)=1.

Así se cortan en un punto U* interior al triángulo ACE.



Los puntos U y U* estudiados.

Ricardo Barroso Campos. Jubilado. Sevilla.