Propuesto por Julio A. Miranda Ubaldo, profesor del Grupo de Asesoría Matemática Fermat, de Perú Problema 684.-

TEOREMA DE HARUKI (Llamado tambien por algunos como el Teorema de Micky Mouse)

Dadas tres circunferencias, Σ , Γ y Ω , cada una se interseca con las otras así:

 Ω y Γ en A exterior a Σ , y B interior a Σ

 Σ y Γ en C exterior a Ω , y D interior a Ω

 Ω y Σ en E exterior a Γ , y F interior a Γ

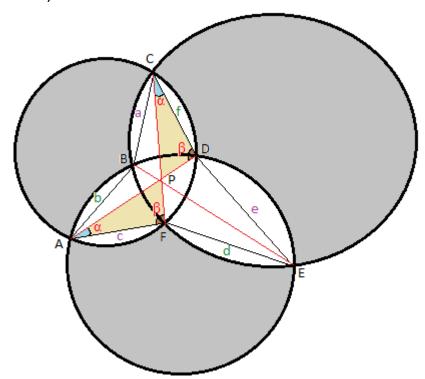
Así se forman tres triángulos ADF, EBD y CBF.

Demostrar que AD EB CF = AF ED CB

Honsberger, R. "Haruki's Cevian Theorem for Circles." §12.4 in Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 144-146, 1995.

Obtenido de: http://mathworld.wolfram.com/HarukisTheorem.html

Solución de Julio A. Miranda Ubaldo, profesor del Grupo de Asesoría Matemática Fermat, de Perú.



Unamos A con D, C con F y E con B. Se puede notar que los segmentos AD, CF y EB concurren en el punto P Se observa además que: m<DAF = m<FCD = α , asimismo m<CDA = m<CFA = β por lo tanto

 $\triangle CDP \sim \triangle AFP | luego: c/f = AP/CP(1)$

Analogamente:

 Δ CBP \sim Δ EFP luego: a / d = CP / EP(2) Δ ABP \sim Δ EDP luego: e / b = EP / AP(3)

Multiplicando miembro a miembro las ecuaciones (1), (2) y (3) tendremos:

Resolviendo esta expresión trigonométrica: (c/f)(a/d)(e/b) = (AP/CP)(CP/EP)(EP/AP)

Finalmente se demuestra que :

$$\frac{ace}{bdf} = 1$$
 l.q.q.d