Ejemplo 93. Te dan un triángulo ABC. Construir cuatro circunferencias k, k1 , k2 y k3, de modo que sea verdadero:

- 1. Las circunferencias k1, k2 y k3 forman parte del triángulo ABC siendo tangentes a los ángulos α , β y γ .
- 2.- La circunferencia k es tangente exterior a las otras tres, teniendo todas el mismo radio.

Kuřina, F (1989) Arte de ver matemática. Statni pedagogiké nakladatelstvi. Praha. (p. 192)

Apreciaciones del director.

Consideremos algunas precisiones.

A) Caso del triángulo equilátero.

Sea un triángulo ABC equilátero de lado a.

Sea la circunferencia k₁ tangente a BAC; tendrá centro O₁ y radio s.

 $O_1A=2s$.

Sean la k_2 y k_3 tangentes a ABC y a BCA de centros O_2 y O_3 y de radios iguales a s.

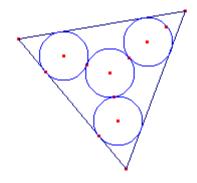
Hallemos el centro y el radio de la tangente exterior a las tres.

El centro es el centro O del triángulo inicial.

Así el radio será OA-3s=
$$\frac{\sqrt{3}a}{3}$$
 – 3s

Deseamos que este radio sea s, luego habrá de ser

$$s = \frac{\sqrt{3}a}{12}$$



Caso a=4.46; s=0.64.

2.- Caso triángulo rectángulo. Sea ABC con el ángulo recto en C.

Sea la circunferencia k₁ tangente a BAC; tendrá centro O₁ y radio s.

Sean la k₂ y k₃ tangentes a ABC y a BCA de centros O₂ y O₃ y de radios iguales a s.

Sea p el semiperímetro. El inradio de ABC es p-b.

Sean U y V los puntos de tangencia de k₃ con CA y CB.

Tenemos:s = CU = CV.

Sean T y R los puntos de tangencia de k_1 con AC y AB, respectivamente.

Así es:
$$\frac{AT}{s} = \frac{p-a}{p-c}$$
, $AT = s\frac{p-a}{p-c}$; $\frac{AR}{s} = \frac{p-a}{p-c}$, $AR = s\frac{p-a}{p-c}$

Sean S y W los puntos de tangencia de k₂ con BA y BC, respectivamente.

$$Es BS = BW = s \frac{p-b}{p-c}.$$

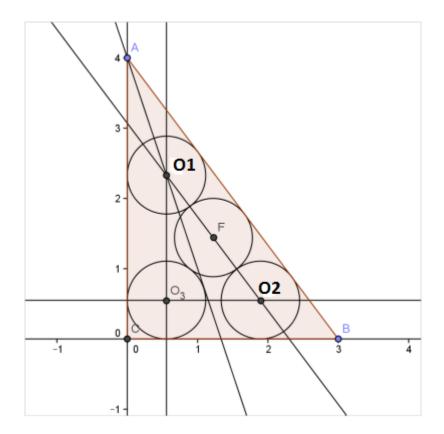
Observando detenidamente la hipotenusa c, dado que O_1O_2 debe ser 4s por pedir tangencia, habrá de ser

c = AR + RS + SB.

Es decir,
$$c = s \frac{p-a}{p-c} + 4s + s \frac{p-b}{p-c}$$

De donde tenemos que $s = \frac{c(p-c)}{4p-3c}$

Así por ejemplo para el caso del triángulo 3, 4, 5, s=5/9



3.- Sea el caso general.

Supongamos el problema resuelto.

Sea R el circunradio y sea r el inradio de ABC.

Sean O_1 , O_2 , y O_3 los centros de k_1 k_2 y k_3 . O_1 O_2 O_3 habrá de ser semejante a ABC. Sea F el circuncentro de k.

Al ser $FO_3=FO_2=FO_1=2s$, este es el radio circunscrito de O_1 O_2 O_3 .

El incentro de O_1 , O_2 , y O_3 coincide con el de ABC, así, el inradio de O_1 O_2 O_3 es r-s.

Por tanto los correspondientes radios habrán de ser semejantes.

$$\frac{R}{2s} = \frac{r}{r-s}$$
. Es decir, $s = \frac{Rr}{R+2r}$

