Problema 685.

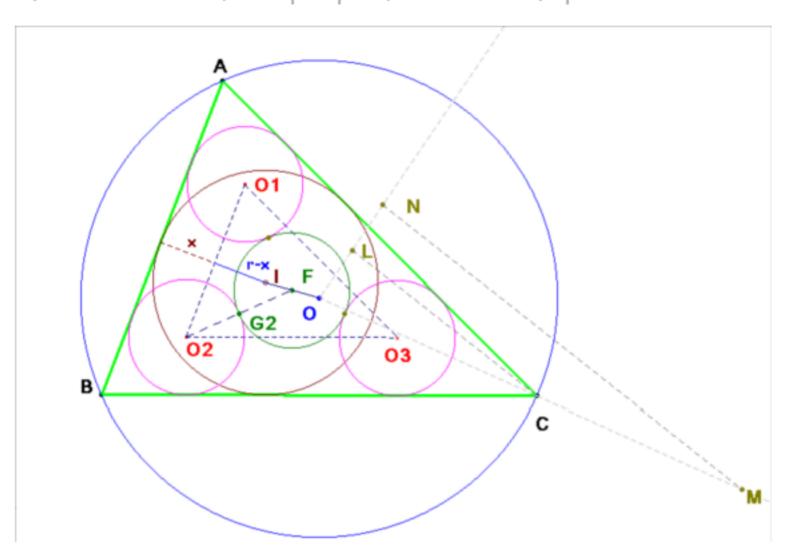
Ejemplo 93. Te dan un triángulo ABC. Construir cuatro circunferencias k, k_1 , k_2 y k_3 de modo que sea verdadero:

- 1. Las circunferencias k_1 , k_2 y k_3 forman parte del triángulo ABC siendo tangentes a los ángulos α , β , y γ .
- 2. La circunferencia k es tangente exterior a las otras tres, tendiendo todas el mismo radio.

Kuřina, F (1989). Arte de ver matemática. Statní pedagogiké nakladatelství. Praha. (p.192)

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.

Sea F el centro radical de las tres circunferencias k_1 , k_2 y k_3 de radio x. Por las propiedades de la potencia de un punto, las distancias FO_i son iguales, por tanto, para encontrar una circunferencia k, tangente a k_i se toma de centro F y radio la distancia al punto G_i de k_i comprendido entre F y O_i , alineado con ellos.



Por ser $k_{1'}$, k_{2} y k_{3} tangentes interiores al triángulo, sus centros han de estar situados en las correspondientes bisectrices, y por tener el mismo radio, el triángulo interior formado por estos, $O_{1}O_{2}$, O_{3} es de lados paralelos a ABC, y por tanto homotético a él. La razón de homotecia es $\frac{r}{r-x}$, donde r es el radio de la circunferencia inscrita, y su centro es I (el incentro).

La construcción de una circunferencia cualquiera tangente a estas tres exteriormente es muy sencilla: se toman paralelas interiores a los lados de ABC, a distancia x (radio de k_1 , k_2 y k_3). Con ello quedan fijados los centros O_1 , O_2 y O_3 de estas circunferencias. Se halla el centro radical F, y, uniendo con uno de los centros, se toma por radio para k el segmento FG_i .

Es evidente que variando el radio x de estas circunferencias, también variarán todos los demás objetos geométricos integrantes de la construcción.

Para que las cuatro circunferencias tengan igual radio, usamos la homotecia entre los triángulos O_1O_2 O_3 y ABC.

Sus circunferencias circunscritas también son homotéticas, una tiene radio R y la otra 2x por tanto, $2x = R \cdot \frac{r-x}{r}$, despejando se obtiene

$$x = \frac{rR}{2r + R}$$

aunque resulta de más interés escribir esa expresión en la forma

$$\frac{r}{x} = \frac{R + 2r}{R}$$

que sugiere la construcción de x a partir de los radios de la inscrita y la circunscrita, como se muestra en la figura. Se han tomado ON = r, OM = R + 2r. De ahí OL = x el valor del radio común a las cuatro circunferencias tangentes.