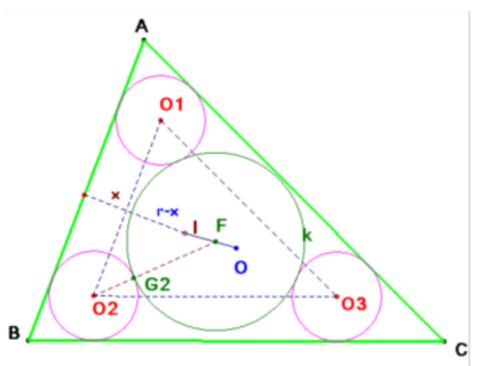
Problema 686.- Dado un triángulo ABC, construir tres circunferencias k_1 , k_2 y k_3 del mismo radio, de modo que sean tangentes interiores a los ángulos α , β , y γ , y tengan un punto común las tres.

Barroso, R (2013). Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.

Siguiendo un razonamiento exactamente igual al empleado en el problema anterior, número 685, construimos una circunferencia k tangente a tres circunferencias k_1 , k_2 y k_3 de radio x. Supongamos que la construcción está hecha. Repetiremos lo dicho entonces:

Sea F el centro radical de las tres circunferencias k_1 , k_2 y k_3 de radio x. Por las propiedades de la potencia de un punto, las distancias FO_i son iguales, por tanto, para encontrar una circunferencia k, tangente a k_i se toma de centro F y radio la distancia al punto G_i de k_i comprendido entre F y O_i , alineado con ellos.



Por ser $k_{1'}$, k_{2} y k_{3} tangentes interiores al triángulo, sus centros han de estar situados en las correspondientes bisectrices, y por tener el mismo radio, el triángulo interior formado por estos, $O_{1}O_{2}O_{3}$ es de lados paralelos a ABC, y por tanto homotético a él. La razón de homotecia es $\frac{r}{r-x'}$ donde r es el radio de la circunferencia inscrita, y su centro es I (el incentro).

La construcción de una circunferencia cualquiera tangente a estas tres exteriormente es muy sencilla: se toman paralelas interiores a los lados de ABC, a distancia x (radio de k_1 , k_2 y k_3). Con ello quedan fijados los centros O_1 , O_2 y

 O_3 de estas circunferencias. Se halla el centro radical F, y uniendo con uno de los centros, se toma por radio para k el segmento $y=FG_i$.

Es evidente que variando el radio x de estas circunferencias, también variarán todos los demás objetos geométricos integrantes de la construcción.

Para que las tres circunferencias de igual radio se corten en un punto, bastará que la circunferencia k tangente a ellas se reduzca a un punto: al centro radical F. Para ello usamos la homotecia entre los triángulos $O_1O_2O_3$ y ABC.

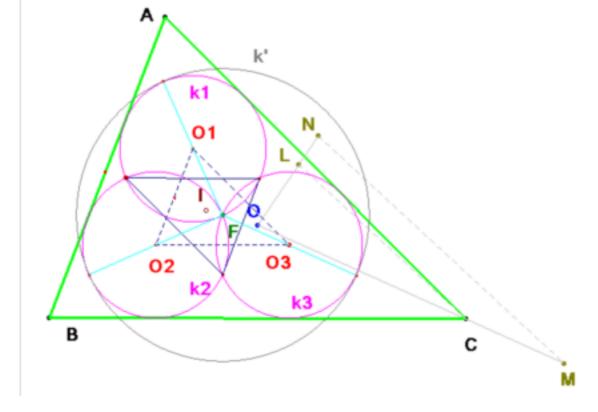
Sus circunferencias circunscritas también son homotéticas, una tiene radio R y la otra x+y por tanto, $x+y=R\cdot \frac{r-x}{x}$. Si anulamos y obtendremos

$$x = \frac{rR}{r + R}$$

que es la mitad de la media armónica de los radios r y R, aunque resulta de más interés escribir esa expresión en la forma

$$\frac{r}{x} = \frac{R+r}{R}$$

que sugiere la construcción de x a partir de los radios de la inscrita y la circunscrita, como se muestra en la figura. Se han tomado ON = r, OM = R + r. De ahí OL = x el valor del radio común a las tres circunferencias tangentes.



(Como colofón, con radio 2x, o sea, la media armónica de R y r, puede trazarse una circunferencia k', centrada en F, tangente a las k_i .) \blacksquare