Problema 687, propuesto en el libro *Sacred Geometry. Philosophy & Practice*; Lawlor, R., Thames & Hudson, 1982, página 88:

Construyamos una circunferencia Ω de centro L y radio LA y dibujemos el diámetro AC. Tracemos una recta m perpendicular a AC por A. Una circunferencia de centro A y radio AC cortará a m en F, situado a la derecha de A.

La recta FL corta a la circunferencia Ω en N y H, con N más cercano a F.

Construyamos una recta perpendicular por A a FH, que cortará otra vez a Ω en D.

Tracemos otra perpendicular a FH por C, que cortará a Ω otra vez en B . BC corta a la recta FL en J .

Demostrar que:

(A) El triángulo ABC es rectángulo con catetos proporcionales a 1, 2.

Sea la recta FD, que cortará a la recta CA en E.

- (B) El triángulo FAE es rectángulo semejante a 3, 4, 5.
- (C) $JN/AB = \varphi$.

Solución de Bruno Salgueiro Fanego, Viveiro, Lugo:

Sea r el radio de Ω y consideremos la referencia cartesiana rectangular en la cual L(0,0), A(0,-r), C(0,r).

(A) Se tiene que F(2r,-r), luego $m_{FL} = \frac{-r-0}{2r-0} = -1/2$, de donde $m_{BC} = -1/m_{FL} = 2$, luego BC: y-r=2(x-0). El punto $B=\Omega \cap BC$, siendo $\Omega: x^2+y^2=r^2$, con lo cual $x_B^2+(2x_B+r)^2=r^2$, siendo entonces $x_B=-4r/5$ y, por tanto, B(-4r/5,-3r/5). Como $\angle ABC$ es un ángulo inscrito en Ω que abarca un diámetro suyo (AC), el triángulo ABC es rectángulo en B. Además, $AB=\sqrt{(-4r/5-0)^2+(-3r/5+r)^2}=2r/\sqrt{5}$ y $BC=\sqrt{(0+4r/5)^2+(r+3r/5)^2}=4r/\sqrt{5}=2AB$, luego ABC es rectángulo con catetos proporcionales a 1, 2.

(B) $m_{AD} = m_{BC} = 2$, siendo así AD: y + r = 2(x - 0). El punto $D = \Omega \cap AD$, siendo $\Omega: x^2 + y^2 = r^2$, con lo cual D(4r/5, 3r/5) (simétrico de D respecto a L). Entonces $FD: y + r = \frac{3r/5 + r}{4r/5 - r}(x - 2r)$ y, como $E = FD \cap AC$, siendo AC: x = 0, resulta E(0, 5r/3). Como FA = m es perpendicular a AC = AE, el triángulo FAE es rectángulo en A. Además,

 $AE = 4 \cdot 2r/3$, $AF = 3 \cdot 2r/3$ y $FE = \sqrt{(0-2r)^2 + (5r/3+r)^2} = 5 \cdot 2r/3$, luego FAE es rectángulo en A y semejante al triángulo rectángulo 3, 4, 5, con razón de semejanza 2r/3.

(C) $J = FL \cap BC$, siendo FL: y = -x/2 y $BC: y - r = \frac{8r/5}{4r/5}(x-0)$, luego J(-2r/5, r/5), y

 $N = \Omega \cap FL, \text{ luego } N\left(2r/\sqrt{5}, -r/\sqrt{5}\right). \text{ Asi, } JN = \sqrt{\left(2r/\sqrt{5} + 2r/5\right)^2 + \left(-r/\sqrt{5} - r/5\right)^2} = \frac{\sqrt{5} + 1}{\sqrt{5}}r \text{ y}$ $AB = 2r/\sqrt{5}, \text{ con lo cual } JN/AB = \frac{\sqrt{5} + 1}{2} = \varphi.$