Problema

Sea dado un triángulo $\triangle ABC$ -por tanto los tres puntos A, B, C se sobreentienden construidos con regla y compás-, construir los triángulos $\triangle C_i'A_i'B_i'$ equiláteros inscritos en las rectas $\overleftarrow{AB}, \overleftarrow{BC}, \overleftarrow{CA},$ con lados de longitud $a = \|\overrightarrow{AB}\|$.

Solución:

Al igual que clásicamente para la construcción de un polígono regular; para dar la construcción de tales triángulos basta con dar la fórmulas algebraicas de las longitudes de los segmentos a partir de los cuales pueden construirse los triángulos pedidos; con la condición de que sean unas fórmulas a base de un número finito de sumas, restas, multiplicaciones, divisiones y raíces cuadradas de longitudes de segmentos construibles con regla y compás. Pues tales operaciones algebraicas se realizan a través el teorema de Thales y del teorema de la Altura.

Consideremos coordenadas cartesianas tal que, A = (0,0), B = (1,0), C = (x,y) con y > 0.

En consecuencia los dos segmentos de longitud |x| e y, se sobreentienden construidos con regla y compás.

Además de dar la construcción vamos a demostrar lo siguiente:

Se tiene la circunferencia \mathbb{B}_{12} de ecuación $3x^2+3y^2-3x+\sqrt{3}y=0$ y la circunferencia \mathbb{B}_{34} de ecuación $3x^2+3y^2-3x-\sqrt{3}y=0$. El triángulo $\triangle ABC$, de forma genérica, verificará que C no pertenece a ninguna de sus dos circunferencias anteriores, y entonces: existen 4 triángulos $\triangle C_i'A_i'B_i'$ equiláteros, $i=1\div 4$, inscritos en la rectas \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} , con lados de longitud $a=\left\|\overrightarrow{AB}\right\|$. De forma no genérica se verificará que C pertenece a una de sus dos circunferencias anteriores, y en tal caso: existen 2 triángulos $\triangle C_j'A_j'B_j'$ equiláteros, $j=1\div 2$ ó $j=3\div 4$, inscritos en la rectas \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} , con lados de longitud $a=\left\|\overrightarrow{AB}\right\|$.

Nótese que las circunferencias \mathbb{B}_{12} y \mathbb{B}_{34} son contruibles trivialmente, pues se tratan de las circunferencias que pasan por los vértices A, B, y sus centros son los vértices exterior e interior, respectivamente, de Napoleón, relativos a \overline{AB} -o sea, son los centros de los dos triángulos equiláteros con lado \overline{AB} -.

Para la construcción de estos 4 triángulos $\triangle C'_i A'_i B'_i$ -2 en el caso no genéricobasta construir sus vértices C'_i sobre la recta $\stackrel{\frown}{AB}$ (la construcción de los otros vértices A'_i , B'_i restantes es trivial). Dicho de otra forma, basta construir con regla y compás los segmentos \mathbb{H}_i de longitud $|H_i|$, tal que las coordenadas de C'_i son $(H_i, 0)$. Entonces: con $\|\overrightarrow{AB}\| = 1$, sea $\mathbb{H} = (H, 0)$ un punto cualquiera en \overleftrightarrow{AB} .

La recta $g_{\mathbb{H},\frac{\pi}{3}}(\overrightarrow{BC})$, recta imagen del giro de la recta \overrightarrow{BC} con centro \mathbb{H} y ángulo directo de amplitud $\frac{\pi}{3}$, tiene por ecuación

$$\left(\frac{1}{2}x - \frac{\sqrt{3}}{2}y + \frac{\lambda}{2}\left(1 - x + \sqrt{3}y\right) + \frac{H}{2}, \frac{\sqrt{3}}{2}x + \frac{y}{2} + \frac{\lambda}{2}\left(\sqrt{3} - y - \sqrt{3}x\right) - \frac{\sqrt{3}}{2}H\right)$$

El punto intersección $B_{12} = g_{\mathbb{H}, \frac{\pi}{3}}(\overrightarrow{BC}) \cap \overrightarrow{AC}$ es punto tal que el triángulo equilátero $\triangle \mathbb{H} A_{12} B_{12}$ es inscrito en la rectas \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} .

Calculando, se obtienen las coordenadas de B_{12} :

$$\left(x\frac{3Hx+\sqrt{3}(2-H)y-3H}{3x^2+3y^2-3x+\sqrt{3}y},y\frac{3Hx+\sqrt{3}(2-H)y-3H}{3x^2+3y^2-3x+\sqrt{3}y}\right)$$

Claramente si el punto C pertenece a la circunferencia \mathbb{B}_{12} entonces el punto B_{12} no pertenece al plano afín euclídeo, las rectas $g_{\mathbb{H},\frac{\pi}{3}}(\overrightarrow{BC})$, \overrightarrow{AC} son paralelas.

La recta $g_{\mathbb{H},-\frac{\pi}{3}}(\overrightarrow{BC})$, recta imagen del giro de la recta \overrightarrow{BC} con centro \mathbb{H} y ángulo inverso de amplitud $\frac{\pi}{3}$, tiene por ecuación

$$\left(\frac{\lambda}{2}\left(x+\sqrt{3}y-1\right)+\frac{1}{2}+\frac{H}{2},\frac{\lambda}{2}\left(y-\sqrt{3}x+\sqrt{3}\right)-\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}H\right)$$

El punto intersección $B_{34} = g_{\mathbb{H}, -\frac{\pi}{3}}(\overrightarrow{BC}) \cap \overrightarrow{AC}$ es punto tal que el triángulo equilátero $\triangle \mathbb{H}A_{34}B_{34}$ es inscrito en la rectas \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} .

Calculando, se obtienen las coordenadas de B_{34} :

$$\left(x\frac{3Hx+\sqrt{3}(-2+H)y-3H}{3x^2+3y^2-3x-\sqrt{3}y},y\frac{3Hx+\sqrt{3}(-2+H)y-3H}{3x^2+3y^2-3x-\sqrt{3}y}\right)$$

Claramente si el punto C pertenece a la circunferencia \mathbb{B}_{34} entonces el punto B_{34} no pertenece al plano afín euclídeo, las rectas $g_{\mathbb{H},-\frac{\pi}{3}}(\overrightarrow{BC}), \overrightarrow{AC}$ son paralelas.

Imponiendo que $\left\|\overrightarrow{\mathbb{H}B}_{12}\right\|=1$ se obtienen, con un largo cálculo, y con $C\notin\mathbb{B}_{12}$, las dos posiblilidades $H=H_1,\ H=H_2$, siguientes:

$$H_{1} = \frac{3y^{3} + 3\sqrt{3}y^{2} + 3yx^{2} + 3yx + \sqrt{3}\sqrt{\left(x^{2} - x + 1 + \sqrt{3}y\right)\left(\sqrt{3}y + 3y^{2} - 3x + 3x^{2}\right)^{2}}}{6\left(x^{2} + y^{2} - x + 1 + \sqrt{3}y\right)y}$$

$$H_{2} = \frac{3y^{3} + 3\sqrt{3}y^{2} + 3yx^{2} + 3yx - \sqrt{3}\sqrt{\left(x^{2} - x + 1 + \sqrt{3}y\right)\left(\sqrt{3}y + 3y^{2} - 3x + 3x^{2}\right)^{2}}}{6\left(x^{2} + y^{2} - x + 1 + \sqrt{3}y\right)y}$$

Imponiendo que $\left\|\overrightarrow{\mathbb{H}B}_{34}\right\|=1$ se obtienen, con un largo cálculo, y con $C\notin\mathbb{B}_{34}$, las dos posiblilidades $H=H_3,\ H=H_4$, siguientes:

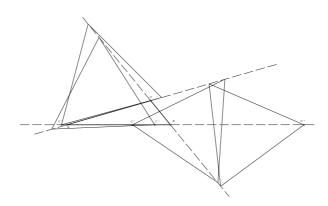
$$H_{3} = \frac{3y^{3} - 3\sqrt{3}y^{2} + 3yx^{2} + 3yx + \sqrt{3}\sqrt{\left(x^{2} - x + 1 - \sqrt{3}y\right)\left(-\sqrt{3}y + 3y^{2} - 3x + 3x^{2}\right)^{2}}}{6\left(x^{2} + y^{2} - x + 1 - \sqrt{3}y\right)y}$$

$$H_{4} = \frac{3y^{3} - 3\sqrt{3}y^{2} + 3yx^{2} + 3yx - \sqrt{3}\sqrt{\left(x^{2} - x + 1 - \sqrt{3}y\right)\left(-\sqrt{3}y + 3y^{2} - 3x + 3x^{2}\right)^{2}}}{6\left(x^{2} + y^{2} - x + 1 - \sqrt{3}y\right)y}$$

El punto C, por las hipótesis, no puede pertenecer a la vez a las dos circunferencias \mathbb{B}_{12} y \mathbb{B}_{34} .

Finalmente, con todo lo anterior, se tiene demostrada la existencia de 4 triángulos $\triangle C_i'A_i'B_i'$ -2 en el caso no genérico- que verifican el enunciado del problema. Pero además para la construcción, con regla y compás, de estos 4 triángulos basta construir sus vértices C_i' sobre la recta \overrightarrow{AB} (la construcción de los otros vértices restantes es trivial). Tales vértices C_i' tienen coordenadas $(H_i, 0)$, y por tanto son construibles, con regla y compás, vía la construcción de los segmentos \mathbb{H}_i de longitud $|H_i|$.

Además, también con todo lo anterior -recordar que y > 0-, se tiene demostrado que si el vértice C pertenece a la región parabólica $\mathbb{P} = \{(x,y) \text{ tal que } x^2 - x + 1 < \sqrt{3}y\}$ existen sólo los dos triángulos solución relativos a H_3 , H_4 ; y si el vértice C pertenece a parabóla de ecuación $x^2 - x + 1 = \sqrt{3}y$ existen sólo los tres triángulos solución relativos a $H_1 = H_2$, H_3 , H_4 .



Como queríamos contruir.

■

Blas Herrera. Universitad Rovira i Virgili.