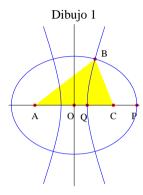
EH-triángulos

Sistema de referencia.

Tomemos A = (-1,0) y C = (1,0), lo que implica que b = 2. Ahora supongo que c+a = 2e así que el vértice B está situado sobre una elipse de focos A y C, semieje horizontal e y excentricidad $\frac{1}{a}$.

De análoga manera, haciendo c-a = 2h, podemos considerar a B como punto de una hipérbola de excentricidad $\frac{1}{h}$.



En estas condiciones B = (eh,s) , siendo S = $\sqrt{\left(e^2-1\right)\left(1-h^2\right)}$, área del triángulo ABC. Si fijamos un valor de e y variamos h obtenemos una elipse y al revés, una hipérbola.

Circunferencias

Las 4 circunferencias inscritas tienen los siguientes incentros

$$I_A = (e, \frac{s}{1+h}), I_B = (-h, -\frac{s}{e-1}), I_C = (-e, \frac{s}{1-h}) e I = (h, \frac{s}{e+1})$$

Sus ordenadas nos dan los respectivos radios pues todas son tangentes al eje X.

La circunferencia circunscrita tiene como centro $O=(0,\frac{-2+e^2+h^2}{2\,S})$ y como radio $R=\frac{(e-h)(e+h)}{2\,S}$

Problemas 144 (Gaceta V.12, nº4) y 193 (Gaceta V.15, nº1)

■ P 144

En un triángulo ABC, sean M el punto medio del lado AC, N el punto medio del arco AC que no contiene a B, I el incentro y T el punto de tangencia de la circunferencia inscrita con el lado AC. Se denotan por a, b y c las longitudes de los lados del triángulo y por r el radio de la circunferencia circunscrita. Probar que las siguientes condiciones son equivalentes:

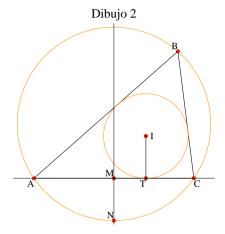
(a) a + c = 2b, (b) $AT.TC = 3r^2$, (c) MN = r, (d) IA.IC = 2r.IB

■ P 193

Sean ABC un triángulo en el que las longitudes de sus lados verifican $a \le b \le c$ y están en progresión aritmética. Si para dicho triángulo S denota su área y r_a , r_b y r_c sus ex-inradios, probar que la magnitud $\frac{(r_a - r_c)S}{(a-c)b^2}$ es constante y hallar su valor.

Solución

Considero el problema 193 como un apartado más del problema 144 propuesto por la misma persona. El triángulo de los problemas cumple que a+c=2b. Generalizaré la solución para triángulos cualesquiera a+c=eb. En el siguiente dibujo nos muestra la situación del problema 144



Ya conocemos los puntos A, B, C, O e I del dibujo. Además M=(0,0) y es claro que T=(h,0). N tiene abscisa 0. Su ordenada se obtiene haciendo OM-R. Resulta que $N=(0,-\frac{\sqrt{1-h^2}}{\sqrt{-1+e^2}})$.

(b). Como T = (h, 0), AT.TC = (1 + h).(1 - h). Así que
$$\frac{\text{AT.TC}}{r^2} = \frac{(1-h^2)(e+1)^2}{(-1+e^2)(1-h^2)} = \frac{e+1}{e-1}$$

(c). Como MN =
$$\frac{\sqrt{1-h^2}}{\sqrt{-1+e^2}}$$
. Si dividimos r entre MN, $\frac{r}{MN} = \frac{\frac{\sqrt{(-1+e^2) \cdot (1-h^2)}}{1+e}}{\frac{\sqrt{1-h^2}}{\sqrt{-1+e^2}}} = e-1$, por tanto MN = $\frac{r}{e-1}$.

(d). Pasamos a cálcular el cociente $\frac{IA.IC}{r.IB} = \frac{2}{e-1}$ que implica esta propiedad.

Un cálculo directo nos da

$$\frac{IA.IC}{r.IB} \,=\, \frac{\sqrt{2}\,\,\sqrt{\frac{(1+h)(e+h)}{1+e}}\,\,\sqrt{2}\,\,\sqrt{\frac{(e-h)(1-h)}{1+e}}}{\frac{\sqrt{(-1+e^2)(1-h^2)}}{1+e}\,\,\sqrt{\frac{(-1+e)(e^2-h^2)}{1+e}}} \,=\, 2\,\,\sqrt{\frac{\frac{(e^2-h^2)(1-h^2)}{(-1+e)(e^2-h^2)}}{\frac{(-1+e^2)(1-h^2)(-1+e)(e^2-h^2)}{1+e}}} \,=\, 2\,\,\sqrt{\frac{1+e}{(-1+e^2)(-1+e)}} \,=\, \frac{2}{e-1}$$

Añado dos relaciones más.

(e). Sabemos que la altura sobre b es la ordenada del punto B, $h_B = S$ Como $r = \frac{S}{1+e}$ resulta que $\frac{h_B}{r} = \frac{S}{\frac{S}{1+e}} = 1+e$.

(f). Y como
$$r_B = \frac{S}{-1+e}$$
 resulta que $\frac{h_B}{r_B} = \frac{S}{\frac{S}{-1+e}} = e-1$.

Y concluyo con el p. 193

$$\frac{(r_a - r_c)\,S}{(a - c)\,b^2} = \; \frac{\left(\frac{S}{1 + h} - \frac{S}{1 - h}\right)S}{-8\,h} = \; \frac{S^2}{2\,\left(-1 + h^2\right)} \; = \; \frac{\left(\text{e}^2 - 1\right)\,\left(1 - h^2\right)}{2\,\left(-1 + h^2\right)} = \; \frac{e^2 - 1}{4}$$

Si e = 2 obtenemos los valores numéricos que pedían estos problemas.

Mi problema

Enunciado

Dada una hipérbola de focos A y C y un punto variable B de la misma. Demostrar que los incentros de los triángulos ABC están alineados. Calcular los segmentos que limitan.

Solución

Al calcular el incentro $I = (h, \frac{s}{1+e})$ vi que estaba sobre la vertical x = h que pasa por un vértice de la hipérbola y se me ocurrió el enunciado.

Además si $e^{-}>\pm\infty$ la ordenada toma el valor $\pm\sqrt{1-h^2}$. El segmento buscado tiene extremos $(h, -\sqrt{1 - h^2})$ y $(h, \sqrt{1 - h^2})$.

Enunciado general

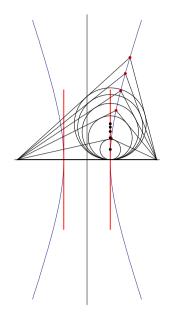
Sean las dos cónicas (una elipse α y una hipérbola β) de focos A y C que pasan por un punto P. Sea B un punto variable de estas cónicas. Además denotamos por I el incentro de ABC e I_A , I_B , I_C sus ex-incentros opuestos, repectivamente, a los vétices A, B y C. Se pide:

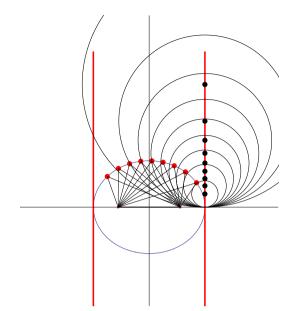
- * Demostrar que si B recorre α todos los I_A están alineados, lo mismo que todos los I_C .
- * Demostrar que si B recorre β todos los I están alineados, lo mismo que todos los I_B.
- * Obtener los lugares geométricos descritos por los puntos anteriores.

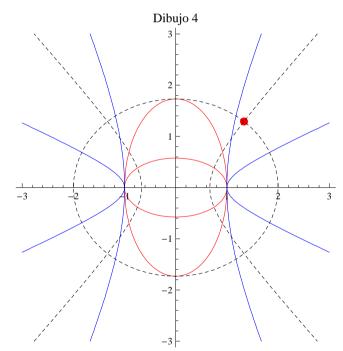
Se completaría el problema con los lugares geométricos de I e I_B en el primer caso y de I_A e I_C en el segundo.

Las soluciones se ven (eso espero) en los dibujos.

Dibujo 3







Otras relaciones

Hay muchas expresiones que relacionan los lados y los in-radios algunas de las cuales se obtienen rápidamente con esta notación.

se obtienen rápidamente con esta notación. Es muy conocida
$$\frac{1}{r_A} + \frac{1}{r_B} + \frac{1}{r_C} = \frac{1+h}{S} + \frac{e-1}{S} + \frac{1-h}{S} = \frac{e+1}{S} = \frac{1}{r}.$$

 $O \ tambi\'en \ r_A.r_B.r_C.r = \ \tfrac{S}{1+h}.\tfrac{S}{e-1}.\tfrac{S}{1-h}.\tfrac{S}{e+1} = \tfrac{S^4}{S^2} = S^2 \ que \ con \ alg\'un \ truco \ da$

$$r_{A}.r_{B}.r_{C}.r \, = \, \, \frac{\left(a^2 + b^2 + c^2\right)^2 - 2\left(a^4 + b^4 + c^4\right)}{16}.$$

Si además calculamos los radios R (circunscrita), $r_9(9 \text{ puntos}) \text{ y } r_3(\text{pasa por los ex-incentros})$

y que son con esta notación $R=\frac{(e-h)~(e+h)}{2~\mathrm{S}}$, $r_9=\frac{(e-h)~(e+h)}{4~\mathrm{S}}=\frac{R}{2}$, $r_3=\frac{(e-h)~(e+h)}{\mathrm{S}}=2R$, las combinaciones

aumentan. Por ejemplo r_A + r_B + r_C - r - r_9 - r_3 = $\frac{3\,R}{2}.$