Problema 690

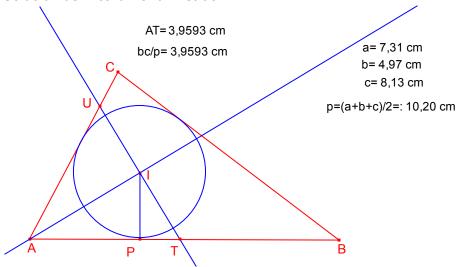
Dado un triángulo ABC, sea I su incentro.

Tracemos la perpendicular a $\overline{\mathsf{AI}}$ por I, que cortará a $\overline{\mathsf{AB}}$ en T y a $\overline{\mathsf{AC}}$ en U con $\overline{\mathsf{AT}} = \overline{\mathsf{AU}}$.

Expresar $\overline{AT} = \overline{AU}$ en función de a ,b, c.

Barroso, R. (2013): Comunicación personal

Solución de Ricard Peiró i Estruch.



Sea P la proyección de I sobre el lado \overline{AB} .

$$\overline{AI} = \sqrt{\frac{bc(p-a)}{p}} \; . \; \; \overline{AP} = p-a \; .$$

Los triángulos $\stackrel{\scriptscriptstyle \Delta}{\mathsf{AIP}}$, $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ITP}}$ son semejantes. Aplicando el teorema de Tales:

$$\frac{\overline{AI}}{\overline{AT}} = \frac{\overline{AP}}{\overline{AI}}.$$

$$\overline{AT} = \frac{\overline{AI}^2}{\overline{AP}} = \frac{\overline{AI}^2}{p-a}.$$

$$\underline{bc(p-a)}$$

$$\overline{AT} = \frac{\frac{bc(p-a)}{p}}{p-a)} = \frac{bc}{p}.$$