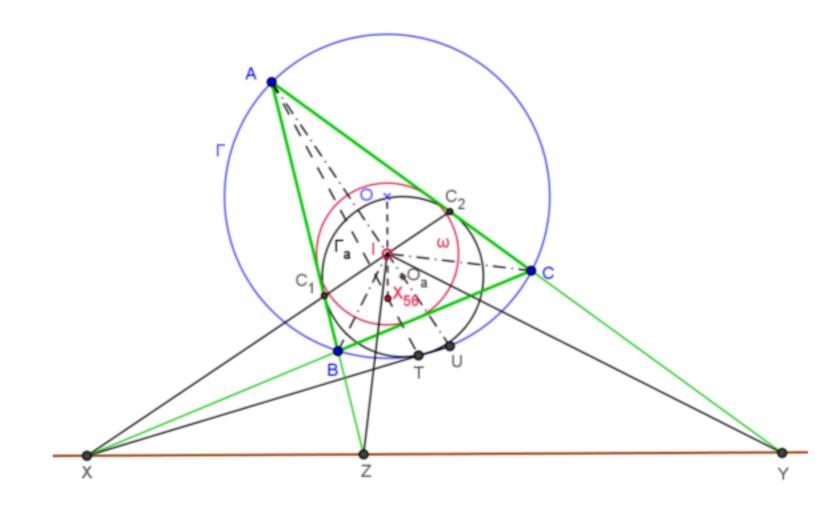
Problema 691.- Dado un triángulo ABC con a < b < c, sea I el incentro. Sea r la recta perpendicular a AI por el punto I. Cortará a la recta BC en X.

- a) Calcular CX y BX en función de α, b, c.
- b) Sea U el punto de corte de la bisectriz del ángulo BAC con la circunferencia circunscrita, que coincide con el punto medio del arco BC. Tracemos la recta XU, que cortará de nuevo a la circunscrita en T. Demostrar que T es el punto de tangencia de la circunscrita con la circunferencia que es tangente a los lados AB, AC y tambien es tangente interior a la circunscrita.
- c) Construyamos de manera análoga a X,Y sobre el lado AC, y Z sobre el lado BC.

Demostrar que X,Y,Z están alineados.

Barroso, R (2013): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



a) El teorema de Menelao aplicado al triángulo ABC con la transversal r = IX nos da la relación:

$$\frac{C_2A}{C_2C} \cdot \frac{XC}{XB} \cdot \frac{C_1B}{C_1A} = 1$$

En el problema 690 calculamos $C_1A=C_2A=rac{bc}{s}$. Cancelando estos segmentos nos queda $rac{C_1B}{C_2C}\cdotrac{CX}{BX}=1$ de donde

A partir de aquí
$$\frac{CX}{b(s-c)} = \frac{BX}{c(s-b)} = \frac{CX - BX}{b(s-c) - c(s-b)} = \frac{a}{s(b-c)}$$

De esta última se pueden obtener $CX = \frac{ab(s-c)}{s(b-c)}$ y $BX = \frac{ca(s-b)}{s(b-c)}$.

b) La circunferencia tangente interiormente a la circunscrita Γ y a los lados AB y AC se conoce como A-circunferencia mixtilínea inscrita (A-mixtilinear incircle). Es conocido que sus puntos de contacto, C_1 y C_2 , con los lados del triángulo equidistan del incentro I, y al ser isósceles AC_1C_2 , la bisectriz AI es perpendicular a C_1C_2 (Véase por ejemplo http://ohkawa.cc.ithiroshima.ac.jp/AoPS.pdf/euclideangeometrynotes-paul.pdf.) Por tanto la recta r=IX sirve para construirla: pasa por C_i y su centro es el punto de intersección de la bisectriz de A con la perpendicular a AC_i por C_i .

Para demostrar que T es el punto de tangencia de la A-circunferencia con Γ , observamos que, en general, si c_1 , c_2 y c_3 son tres circunferencias cualesquiera, el producto de las dos homotecias que transforman sucesivamente c_1 en c_2 y c_2 en c_3 será una homotecia que transforma c_1 en c_3 y tendrá su centro alineado con los de aquellas.

La homotecia de razón positiva que pasa de Γ a ω tiene por centro el punto X_{56} de la enciclopedia ETC (la de razón negativa

Las tres circunferencias a que nos referimos aquí son la inscrita ω , la A-circunferencia... Γ_a y Γ .

tiene centro X_{55}). La que transforma ω en Γ_a , el vértice A, donde concurren las tangentes comunes, también de razón positiva. Finalmente, la que pasa de Γ_a a Γ tiene por centro el punto de contacto de ambas, que vamos a llamar por ahora W. Estos tres puntos están alineados. Concluiremos esta parte demostrando que W=T.

Tomando coordenadas baricéntricas respecto del triángulo ABC, demostraremos que el punto de intersección de las rectas definidas por A y X_{56} de una parte y X y U de otra, concurren en un punto de Γ .

A partir de $AC_1 = \frac{bc}{s}$ obtenemos $C_1 = (s - b; b; 0); C_2 = (s - c; 0; c)$.

Comenzaremos poniendo las ecuaciones o coordenadas de los diferentes objetos geométricos.

(Es fácil comprobar que el punto medio del segmento que definen es el incentro
$$I(a:b:c)$$
).

El punto $X_{56} = \left(\frac{a^2}{s-a} : \frac{b^2}{s-b} : \frac{c^2}{s-c}\right)$

Circunferencia circunscrita
$$\Gamma$$
: $a^2yz + b^2zx + c^2xy = 0$

Bisectriz de A: cy = bz: su intersección con la circunscrita es el punto $U = \left(\frac{-a^2}{b+c}:b:c\right)$.

Recta C_1C_2 : $x = \frac{s-b}{b}y + \frac{s-c}{c}z$.

Esta recta corta al lado
$$BC$$
 ($x=0$) del triángulo en el punto $X=\left(0:\frac{b}{s-b}:\frac{-c}{s-c}\right)$.

La recta XU tiene como ecuación $\begin{vmatrix} x & y & z \\ 0 & \frac{b}{s-b} & \frac{-c}{s-c} \\ \frac{-a^2}{b+c} & b & c \end{vmatrix} = 0$ que una vez desarrollado da: r_{XU} : $\frac{b+c}{a}x + \frac{s-b}{b}y + \frac{s-c}{c}z = 0$

Para la recta
$$AX_{56}$$
:
$$\begin{vmatrix} x & y & z \\ \frac{a^2}{s-a} & \frac{b^2}{s-b} & \frac{c^2}{s-c} \\ 1 & 0 & 0 \end{vmatrix} = 0, \text{ o bien,}$$

$$r_{AX_{56}}$$
:
$$\frac{c^2}{s-c}y - \frac{b^2}{s-b}z = 0$$
 El punto de intersección de estas dos rectas, resolviendo el sistema, es:

enunciado y damos fin a esta parte.

 $r_{AX_{56}} \cap r_{XU} = W = \left(-a : \frac{b^2}{c-b} : \frac{c^2}{c-c}\right).$

Ahora se comprueba que
$$W$$
 verifica la ecuación de la circunferencia circunscrita y con ello concluimos que es el punto T del enunciado y damos fin a esta parte.

 $a^2 \cdot \frac{b^2}{s-b} \cdot \frac{c^2}{s-c} - b^2 a \cdot \frac{c^2}{s-c} - c^2 a \frac{b^2}{s-b} = \frac{a^2 b^2 c^2 - (s-b)ab^2 c^2 - ab^2 c^2 (s-c)}{(s-b)(s-c)} = \frac{ab^2 c^2 (a-s+b-s+c)}{(s-b)(s-c)} = 0.$

$$YA = c(s-a) = ZB = a(s-b)$$

 $\frac{YA}{YC} = \frac{c(s-a)}{a(s-c)} \quad y \quad \frac{ZB}{ZA} = \frac{a(s-b)}{b(s-a)}.$

c) El mismo razonamiento utilizado en a) nos sirve para concluir que

Tenemos ahora

$$\frac{ZB}{ZA} \cdot \frac{YA}{YC} \cdot \frac{XC}{XA} = \frac{a(s-b)}{b(s-a)} \cdot \frac{c(s-a)}{a(s-c)} \cdot \frac{b(s-c)}{c(s-b)} = 1.$$
 Por tanto los puntos, en virtud del recíproco del teorema de Menelao, están alineados.

Nota.- Esta parte es un caso particular de una situación mucho más general, consecuencia del teorema del cuadrilátero de

Desargues, que se expresa así: La condición necesaria y suficiente para que tres rectas $m{l},m{m}$ y $m{n}$ concurrentes en $m{0}$ corten a los lados BC, CA y AC de un triángulo ABC en puntos alineados L, M, N es que la homografía del haz O^* definida por

$$(OA,OB,OC) \rightarrow (l,m,n)$$

El punto O es el incentro y la correspondencia que asocia a cada bisectriz su perpendicular por el incentro es, evidentemente,

una involución.

sea una involución.