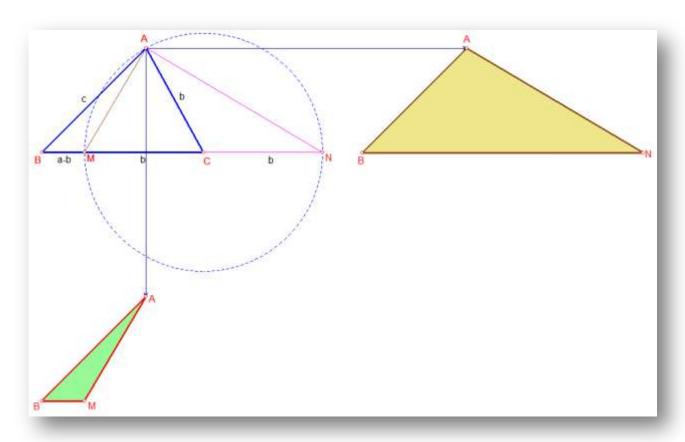
Problema 694.-

La suma de dos lados de un triángulo es a su diferencia como la tangente de la semisuma de los ángulos opuestos es a la tangente de la semidiferencia de los mismos.

Sánchez E. y Zorzano, Z. Curso de Geometría elemental y trigonometría rectilínea (1890) Logroño. Pag. 303

Solución 1 de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Suponemos en todo el desarrollo siguiente que $a \le b$, lo cual no quita generalidad al problema. De la construcción realizada se deben observan los siguientes hechos de interés:



Por un lado sea el triángulo ABN de lados y ángulos siguientes:

Triángulo ABN		Triángulo ABM	
Lados	Ángulos	Lados	Ángulos
AB = c	$\measuredangle \frac{C}{2}$	AB = c	$\angle (90^{\circ} + \frac{C}{2})$
BN = a + b	$\measuredangle(A + \frac{C}{2}) = \measuredangle(90^{\circ} + \frac{A - B}{2})$	BM = a - b	$ \angle \frac{A-B}{2} $
$\frac{sen \angle \frac{C}{2}}{c} = \frac{\cos \angle \frac{A-B}{2}}{a+b}$		$\frac{\cos \angle \frac{C}{2}}{c} = \frac{\sec n\angle \frac{A-B}{2}}{a-b}$	
$\frac{a+b}{c} = \frac{\cos \angle \frac{A-B}{2}}{\sec \angle \frac{C}{2}}$		$\frac{a-b}{c} = \frac{\operatorname{sen} \angle \frac{A-B}{2}}{\cos \angle \frac{C}{2}}$	

Considerando ambas expresiones, tenemos:

$$\frac{a+b}{a-b} = \frac{\cos \measuredangle \frac{A-B}{2} \cdot \cos \measuredangle \frac{C}{2}}{\sin \measuredangle \frac{A-B}{2} \cdot \sec n \measuredangle \frac{C}{2}} = \frac{\tan \measuredangle \frac{A+B}{2}}{\tan \measuredangle \frac{A-B}{2}} \quad \text{ya que:} \quad \frac{\cos \measuredangle \frac{C}{2} = \sec n \measuredangle \frac{A+B}{2}}{\sin \measuredangle \frac{A-B}{2}}$$

En definitiva,
$$\frac{a+b}{a-b} = \frac{\tan \angle \frac{A+B}{2}}{\tan \angle \frac{A-B}{2}}$$
, c.q.d