Problema 695. (Yiu, P., Recreational Mathematics, p. 435).

Dado un cuadrado ABCD de lado $2\sqrt{5}$, consideremos M_1 y M_2 los puntos medios de AB y BC. DM_2 corta a M_1C en U. Demostrar que el triángulo DUM_1 es 4, 3, 5.

Solución de Bruno Salgueiro Fanego, Viveiro, Lugo.

Consideremos la referencia cartesiana rectangular $\left(A; \left\{\frac{1}{2\sqrt{5}} \overline{AB}, \frac{1}{2\sqrt{5}} \overline{AD}\right\}\right)$, en la que se tienen las siguientes coordenadas: A(0,0), $B(2\sqrt{5},0)$, $D(0,2\sqrt{5})$. Al ser M_1 y M_2 los respectivos puntos medios de AB y BC, resulta que $M_1(\sqrt{5},0)$, $D(2\sqrt{5},\sqrt{5})$, siendo entonces $\frac{x-0}{2\sqrt{5}-0} = \frac{y-2\sqrt{5}}{\sqrt{5}-2\sqrt{5}}$ y $\frac{x-\sqrt{5}}{2\sqrt{5}-\sqrt{5}} = \frac{y-0}{\sqrt{5}-0}$ las ecuaciones continuas de las rectas DM_2 y M_1C , respectivamente. El punto de corte de ambas rectas, $DM_2: y=-1/2x+2\sqrt{5}$ y $M_1C: y=2x-2\sqrt{5}$ es el punto $U\left(8/\sqrt{5},6/\sqrt{5}\right)$, con lo cual $DU=\sqrt{\left(8/\sqrt{5}-0\right)^2+\left(6/\sqrt{5}-2\sqrt{5}\right)^2} = \sqrt{64/5+16/5}=4$, $M_1U=\sqrt{\left(8/\sqrt{5}-\sqrt{5}\right)^2+\left(6/\sqrt{5}-0\right)^2} = \sqrt{9/5+36/5}=3$, $DM_1=\sqrt{\left(\sqrt{5}-0\right)^2+\left(0-2\sqrt{5}\right)^2} = \sqrt{5+20}=5$, quedendo se é demostrado que el trióngulo DUM_1 es un trióngulo (rectóngulo) de lados

quedando así demostrado que el triángulo DUM_1 es un triángulo (rectángulo) de lados 4, 3, 5.