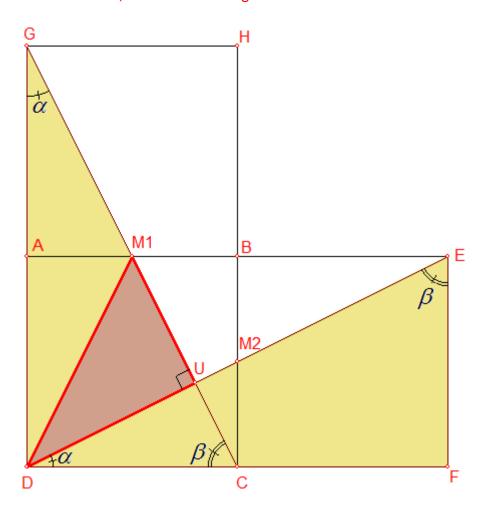
Problema 695.-

Dado un cuadrado ABCD de lado $2\sqrt{5}$ consideremos M_1 y M_2 los puntos medios de AB y BC D M_2 corta a M_1 C en U. Demostrar que el triángulo DU M_1 es 4, 3 y 5. Yiu, P. (2003): Recreational Mathematics (p. 435)

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Una vez realizada la construcción, observamos los siguientes hechos de interés:



1.- El ángulo
$$\angle DUM_1 = \angle DUC = \frac{\pi}{2}$$
 ya que $\alpha + \beta = \frac{\pi}{2}$.

2.-
$$DM_1 = \sqrt{DA^2 + AM_1^2} = \sqrt{(2\sqrt{5})^2 + (\sqrt{5})^2}; \quad DM_1 = 5$$

3.- $DM_1 = M_1G = M_1C = 5 \Rightarrow CG = 10$. Aplicando el Teorema del Cateto al triángulo rectángulo CDG, obtenemos que $DC^2 = UC.CG \Rightarrow (2\sqrt{5})^2 = UC.10 \Rightarrow UC = 2$. En definitiva $M_1U = M_1C - UC = 3$. 4.- De esta manera, el triángulo rectángulo DUM₁ es de la forma 3,4 y 5.