Problema 695

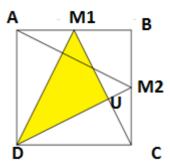
Dado un cuadrado ABCD de lado $2\sqrt{5}$ consideremos M_1 y M_2 los puntos medios de AB y BC

DM₂ corta a M₁C en U. Demostrar que el triángulo DUM₁ es 4,3,5.

Yiu, P. (2003): Recreational Mathematics (p. 435).

Solución del editor

a) Solución Trigonométrica



$$DM_1 = \sqrt{AD^2 + A{M_1}^2} = \sqrt{20 + 5} = 5$$

Sea 1=
$$\alpha$$
. Es $tg \ \alpha = \frac{AM_1}{DA} = \frac{\sqrt{5}}{2\sqrt{5}} = 1/2$

Por analogía de la figura, es <BCM₁=<CDM₂= α .

Por ello, es <UCD=<M₁CD= $90-\alpha$, y así <DUM₁= 90° .

Por ello el triángulo pedido es rectángulo en U.

Por otra parte, $<M_1DU=<\beta=90^\circ-2\alpha$.

Así,
$$tg \ \beta = tg(90^{\circ} - 2\alpha) = cotg \ (2\alpha) = \frac{1 - tg^2 \alpha}{2 \ tg\alpha} = \frac{1 - 1/4}{2^{1}/2} = \frac{3}{4}$$

Luego
$$sen \beta = \sqrt{\frac{tg^2\beta}{tg^2\beta+1}} = \frac{3}{5}$$

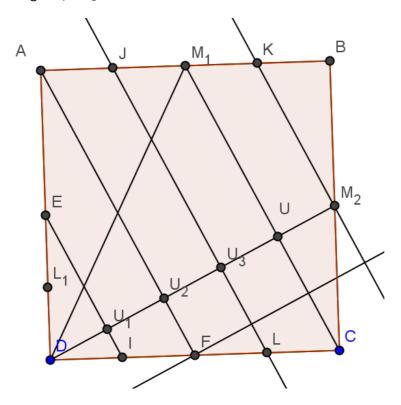
Así, es
$$M_1 U = D M_1 sen \beta = 5 \left(\frac{3}{5}\right) = 3$$
.

Y por otra parte,
$$\cos \beta = \frac{sen \beta}{tg \beta} = \frac{3/5}{3/4} = \frac{4}{5}$$

Y, finalmente,
$$DU = DM_1 \cos \beta = 5 \left(\frac{4}{5}\right) = 4$$

B) Solución euclídea.

Por Pitágoras, DM₁=5.



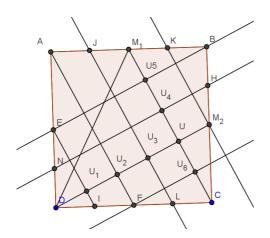
Tracemos paralelas por E, punto medio de AD, EI, A, AF, J, punto medio de AM_1 , JLy K, punto medio de M_1B , KM_2 , a M1C.

DI=IF=FL=LC=1/4 DC.

 $AJ=JM_1=M_1K=KB=1/4 AB$.

Así, DM_2 se corta por esas paralelas en cinco segmentos iguales limitados por D, U1, U2, U3, U, M_2 .

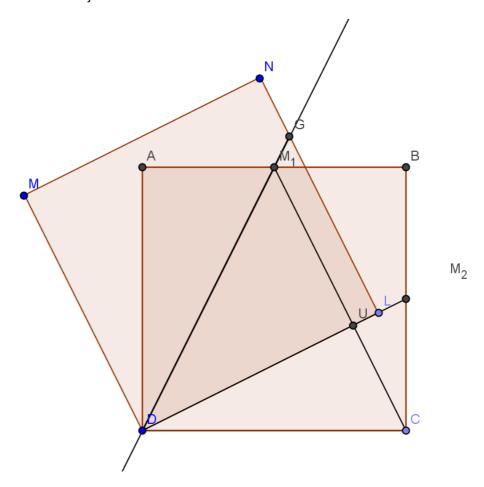
Luego DU=4.



Trazando paralelas a DM_2 por N, punto medio de ED,por E, punto medio de AD, y F punto medio de DC, se obtienen los puntos U_4 , U_5 y U_6 que con U dividen a M1 C en cinco segmentos iguales de longitud 1.

Así, $M_1U=3$.

c) Solución mediante semejanza.



Si giramos el cuadrdado con centro D y angulo M_2DC , obtenmos DLNM y luego hacemos una homotecia de razón DM_1/DG , obtenemos al final de la semejanza el triángulo DUM_1

Habíamos obtenido en a) que $\cos(\langle GDL \rangle) = \frac{4}{5}$, por lo que

$$\frac{4}{5} = \frac{DL}{DG}$$
; así $DG = \frac{5DL}{4} = \frac{5(2\sqrt{5})}{4} = \frac{5\sqrt{5}}{2}$

Además es $sen < GDL = \frac{3}{5}$, $por lo que <math>\frac{3}{5} = \frac{LG}{DG}$, $y LG = \frac{3DG}{5} = \frac{3\sqrt{5}}{2}$

Luego por la homotecia, es

$$DU = GL\left(\frac{DM_1}{DG}\right) = \frac{3\sqrt{5}}{2} \frac{5}{5\sqrt{5}/2} = 3.$$

Υ

$$M_1 U = DL \left(\frac{DM_1}{DG}\right) = 2\sqrt{5} \frac{5}{5\sqrt{5}/2} = 4$$

Ricardo Barroso Campos.

Jubilado

Universidad de Sevilla.