Problema 695.

Dado un cuadrado ABCD de lado $2\sqrt{5}$ consideremos M_1 y M_2 los puntos medios de A \overline{AB} i \overline{BC} . DM_2 corta a M_1C en U. Demostrar que el triángulo DUM_1 es 4,3,5.

Yiu, P. (2003): Recreational Mathematics (p. 435).

Solución Ricard Peiró i Estruch:

Haremos una demostración general.

Sea el cuadrado ABCD de lado $\overline{AB} = a$.

Aplicando el teorema de Pitàgores al triángulo

$$\overline{AM_1} = \frac{1}{2}a$$
.

Aplicando el teorema de Pitàgores al triángulo rectángulo

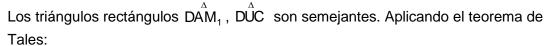
DAM₁:

$$\overline{DM_1} = \frac{\sqrt{5}}{2} a .$$

 \angle CDM $_2$ = \angle BCM $_1$, entonces, \angle CDU, \angle DCU son complementarios.

Por tanto, $\angle DUC = 90^{\circ}$.

El triángulo DUM_1 es rectángulo $\angle DUM_1 = 90^\circ$.



$$\frac{\overline{DU}}{a} = \frac{a}{\frac{a}{2}\sqrt{5}} \ .$$

$$\overline{DU} = \frac{2\sqrt{5}}{5} a \ .$$

$$\frac{\overline{DU}}{\overline{DM}_1} = \frac{\frac{2\sqrt{5}}{5}a}{\frac{\sqrt{5}}{2}} = \frac{4}{5}$$

Entonces, el triángulo \overrightarrow{DU} es un triángulo \overrightarrow{DU} : $\overrightarrow{UM_1}$: $\overrightarrow{DM_1}$ = 4 : 3 : 5 .

En el caso particular del problema:

$$\overline{DU} = 4$$
, : $\overline{UM_1} = 3$, $\overline{DM_1} = 5$.

