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Abstract. With the availability of computer software on dynamic geometry,
beautiful and accurate geometric diagrams can be drawn, edited, and organized
efficiently on computer screens. This new technological capability stimulates
the desire to strive for elegance in actual geometric constructions. The present
paper advocates a closer examination of the geometric meaning of the algebraic
expressions in the analysis of a construction problem to actually effect a con-
struction as elegantly and efficiently as possible on the computer screen. We
present a fantasia of euclidean constructions the analysis of which make use of
elementary algebra and very basic knowledge of euclidean geometry, and focus
on incorporating simple algebraic expressions into actual constructions using the
Geometer’s Sketchpad�.

After a half century of curriculum reforms, it is fair to say that mathematicians
and educators have come full circle in recognizing the relevance of Euclidean ge-
ometry in the teaching and learning of mathematics. For example, in [15], J.
E. McClure reasoned that “Euclidean geometry is the only mathematical subject
that is really in a position to provide the grounds for its own axiomatic proce-
dures”. See also [19]. Apart from its traditional role as the training ground for
logical reasoning, Euclidean geometry, with its construction problems, provides a
stimulating milieu of learning mathematicsconstructivistically. One century ago,
D. E. Smith [17, p.95] explained that the teaching of constructions using ruler and
compass serves several purposes: “it excites [students’] interest, it guards against
the slovenly figures that so often lead them to erroneous conclusions, it has a gen-
uine value for the future artisan, and its shows that geometry is something besides
mere theory”. Around the same time, the British Mathematical Association [16]
recommended teaching school geometry as two parallel courses ofTheoremsand
Constructions. “The course of constructions should be regarded as apractical
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course, the constructions being accurately made with instruments, and no construc-
tion, or proof of a construction, should be deemed invalid by reason of its being
different from that given in Euclid, or by reason of its being based on theorems
which Euclid placed after it”.

A good picture is worth more than a thousand words. This is especially true for
students and teachers of geometry. With good illustrations, concepts and problems
in geometry become transparent and more understandable. However, the diffi-
culty of drawing good blackboard geometric sketches is well appreciated by every
teacher of mathematics. It is also true that many interesting problems on construc-
tions with ruler and compass are genuinely difficult and demand great insights for
solution, as in the case of geometrical proofs. Like handling difficult problems in
synthetic geometry with analytic geometry, one analyzes construction problems by
the use of algebra. It is well known that historically analysis of such ancient con-
struction problems as the trisection of an angle and the duplication of the cube gave
rise to the modern algebraic concept of field extension. A geometric construction
can be effected with ruler and compass if and only if the corresponding algebraic
problem is reducible to a sequence of linear and quadratic equations with con-
structible coefficients. For all the strength and power of such algebraic analysis of
geometric problems, it is often impractical to carry out detailed constructions with
paper and pencil, so much so that in many cases one is forced to settle for mere
constructibility. For example, Howard Eves, in his solution [6] of the problem
of construction of a triangle given the lengths of a side and the median and angle
bisector on the same side, made the following remark after proving constructibility.

The devotee of the game of Euclidean constructions is not really
interested in the actual mechanical construction of the sought tri-
angle, but merely in the assurance that the construction is possible.
To use a phrase of Jacob Steiner, the devotee performs his con-
struction “simply by means of the tongue” rather than with actual
instruments on paper.

Now, the availability in recent years of computer software on dynamic geome-
try has brought about a change of attitude. Beautiful and accurate geometric dia-
grams can be drawn, edited, and organized efficiently on computer screens. This
new technological capability stimulates the desire to strive for elegance in actual
geometric constructions. The present paper advocates a closer examination of the
geometric meaning of the algebraic expressions in the analysis of a construction
problem to actually effect a construction as elegantly and efficiently as possible on
the computer screen.1 We present a fantasia of euclidean constructions the analysis
of which make use of elementary algebra and very basic knowledge of euclidean
geometry.2 We focus on incorporating simple algebraic expressions into actual
constructions using theGeometer’s Sketchpad�. The tremendous improvement

1See§6.1 for an explicit construction of the triangle above with a given side, median, and angle
bisector.

2TheGeometer’s Sketchpad� files for the diagrams in this paper are available from the author’s
websitehttp://www.math.fau.edu/yiu/Geometry.html.
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on the economy of time and effort is hard to exaggerate. The most remarkable fea-
ture of theGeometer’s Sketchpad� is the capability of customizing atool folder to
make constructions as efficiently as one would like. Common, basic constructions
need only be performed once, and saved astools for future use. We shall use the
Geometer’s Sketchpad� simply as ruler and compass, assuming atool folder con-
taining at least the followingtools3 for ready use:
(i) basic shapes such asequilateral triangle andsquare,
(ii) tangents to a circle from a given point,
(iii) circumcircle andincircle of a triangle.

Sitting in front of the computer screen trying to perform geometric construc-
tions is a most ideal constructivistic learning environment: a student is to bring his
geometric knowledge and algebraic skill to bear on natural, concrete but challeng-
ing problems, experimenting with various geometric interpretations of concrete
algebraic expressions. Such analysis and explicit constructions provide a fruitful
alternative to the traditional emphasis of the deductive method in the learning and
teaching of geometry.

1. Some examples

We present a few examples of constructions whose elegance is suggested by
an analysis a little more detailed than is necessary for constructibility or routine
constructions. A number of constructions in this paper are based on diagrams in
the interesting book [9]. We adopt the following notation for circles:
(i) A(r) denotes the circle with centerA, radiusr;
(ii) A(B) denotes the circle with centerA, passing through the pointB, and
(iii) (A) denotes a circle with centerA and unspecified radius, but unambiguous in
context.

1.1. Construct a regular octagon by cutting corners from a square.

P

Q

A B

CD

x 1 − 2x x

x

Figure 1A

O

P

Q

A B

CD

Figure 1B

Suppose an isosceles right triangle of (shorter) sidex is to be cut from each cor-
ner of a unit square to make a regular octagon. See Figure 1A. A simple calculation
shows thatx = 1 −

√
2

2 . This meansAP = 1 − x =
√

2
2 . The pointP , and the

3A construction appearing insans serif is assumed to be one readily performable with a cus-
tomized tool.
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other vertices, can be easily constructed by intersecting the sides of the square with
quadrants of circles with centers at the vertices of the square and passing through
the centerO. See Figure 1B.

1.2. The centersA andB of two circles lie on the other circle. Construct a circle
tangent to the lineAB, to the circle(A) internally, and to the circle(B) externally.

BA

K

X

Figure 2A

BA

C

X

K

M

Y

Figure 2B

SupposeAB = a. Let r = radius of the required circle(K), andx = AX,
whereX is the projection of the centerK on the lineAB. We have

(a+ r)2 = r2 + (a + x)2, (a− r)2 = r2 + x2.

Subtraction gives4ar = a2 + 2ax or x + a
2 = 2r. This means that in Figure 2B,

CMXY is a square, whereM is the midpoint ofAB. The circle can now be easily
constructed by first erecting asquare onCM .

1.3. Equilateral triangle in a rectangle.Given a rectangleABCD, construct points
P andQ onBC andCD respectively such that triangleAPQ is equilateral.

Construction 1. Constructequilateral triangles CDX andBCY , withX andY
inside the rectangle. ExtendAX to intersectBC at P andAY to intersectCD at
Q.

The triangleAPQ is equilateral.See Figure 3B.

A B

CD Q

P

Figure 3A
A B

CD Q

P
X

Y

Figure 3B

This construction did not come from a lucky insight. It was found by an analysis.
Let AB = DC = a, BC = AD = b. If BP = y, DQ = x andAPQ is
equilateral, then a calculation shows thatx = 2a−√

3b andy = 2b−√
3a. From

these expressions ofx andy the above construction was devised.
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1.4. Partition of an equilateral triangle into 4 triangles with congruent incircles.
Given an equilateral triangle, construct three lines each through a vertex so that the
incircles of the four triangles formed are congruent. See Figure 4A and [9, Problem
2.1.7] and [10, Problem 5.1.3], where it is shown that if each side of the equilateral
triangle has lengtha, then the small circles all have radii1

8 (
√

7 −√
3)a. Here is a

calculation that leads to a very easy construction of these lines.

A

B C

Z

X

Y

Figure 4A
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Y ′

Z′

X′
D

EF

Figure 4B

In Figure 4A, letCX = AY = BZ = a andBX = CY = AZ = b. The
equilateral triangleXY Z has sidelengtha − b and inradius

√
3

6 (a − b). Since
∠BXC = 120◦, BC =

√
a2 + ab+ b2, and the inradius of triangleBXC is

1
2
(a+ b−

√
a2 + ab+ b2) tan 60◦ =

√
3

2
(a + b−

√
a2 + ab + b2).

These two inradii are equal if and only if3
√
a2 + ab+ b2 = 2(a+2b). Applying

the law of cosines to triangleXBC, we obtain

cosXBC =
(a2 + ab+ b2) + b2 − a2

2b
√
a2 + ab+ b2

=
a+ 2b

2
√
a2 + ab+ b2

=
3
4
.

In Figure 4B,Y ′ is the intersection of the arcB(C) and the perpendicular from
the midpointE of CA to BC. The lineBY ′ makes an anglearccos 3

4 with BC.
The other two linesAX′ andCZ′ are similarly constructed. These lines bound the
equilateral triangleXY Z, and the fourincircles can be easily constructed. Their
centers are simply the reflections ofX′ in D, Y ′ in E, andZ′ in F .

2. Some basic constructions

2.1. Geometric mean and the solution of quadratic equations.The following con-
structions of the geometric mean of two lengths are well known.

Construction 2. (a) Given two segments of lengtha, b, mark three pointsA, P ,
B on a line (P betweenA andB) such thatPA = a andPB = b. Describe a
semicircle withAB as diameter, and let the perpendicular throughP intersect the
semicircle atQ. ThenPQ2 = AP · PB, so that the length ofPQ is the geometric
mean ofa andb. See Figure 5A.
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(b) Given two segments of lengtha < b, mark three pointsP , A, B on a line
such thatPA = a, PB = b, andA, B are on thesameside ofP . Describe a
semicircle withPB as diameter, and let the perpendicular throughA intersect the
semicircle atQ. ThenPQ2 = PA · PB, so that the length ofPQ is the geometric
mean ofa andb. See Figure 5B.

PA B

Q

a b

√
ab

Figure 5A

P
A

B

Q

Figure 5B

More generally, a quadratic equation can be solved by applying the theorem of
intersecting chords:If a line throughP intersects a circleO(r) at X andY , then
the productPX · PY (of signed lengths) is equal toOP2 − r2. Thus, if two
chordsAB andXY intersect atP , thenPA · PB = PX · PY . See Figure 6A.
In particular, ifP is outside the circle, and ifPT is a tangent to the circle, then
PT 2 = PX · PY for any line intersecting the circle atX andY . See Figure 6B.

O

A BP

Y

X

Figure 6A

O

X

Y

P

T

Figure 6B

A quadratic equation can be put in the formx(x ± a) = b2 or x(a − x) = b2.
In the latter case, for real solutions, we requireb ≤ a

2 . If we arrangea andb as
the legs of a right triangle, then the positive roots of the equation can be easily
constructed as in Figures 6C and 6D respectively.

The algebraic method of the solution of a quadratic equation by completing
squares can be easily incorporated geometrically by using the Pythagorean theo-
rem. We present an example.
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Figure 6C
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Figure 6D

2.1.1. Given a chordBC perpendicular to a diameterXY of circle (O), to con-
struct a line throughX which intersects the circle atA andBC atT such thatAT
has a given lengtht. Clearly,t ≤ YM , whereM is the midpoint ofBC.

Let AX = x. Since∠CAX = ∠CYX = ∠TCX, the lineCX is tangent to
the circleACT . It follows from the theorem of intersecting chords thatx(x− t) =
CX2. The method of completing squares leads to

x =
t

2
+

√
CX2 +

(
t

2

)2

.

This suggests the following construction.4

X

Y

CB

P

Q
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A′

T

A

O

M

Figure 7

Construction 3. On the segmentCY , choose a pointP such thatCP = t
2 . Extend

XP to Q such thatPQ = PC. LetA be an intersection ofX(Q) and (O). If the
lineXA intersectsBC at T , thenAT = t. See Figure 7.

4 This also solves the construction problem of triangleABC with given angleA, the lengthsa of
its opposite side, and of the bisector of angleA.
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2.2. Harmonic mean and the equation1a + 1
b = 1

t . The harmonic mean of two
quantitiesa and b is 2ab

a+b . In a trapezoid of parallel sidesa and b, the parallel
through the intersection of the diagonals intercepts a segment whose length is the
harmonic mean ofa andb. See Figure 8A. We shall write this harmonic mean as
2t, so that1a + 1

b = 1
t . See Figure 8B.

b

a

A B

CD

Figure 8A

t

a b

Figure 8B

Here is another construction oft, making use of the formula for the length of an
angle bisector in a triangle. IfBC = a, AC = b, then the angle bisectorCZ has
length

tc =
2ab
a+ b

cos
C

2
= 2t cos

A

2
.

The lengtht can therefore be constructed by completing the rhombusCXZY (by
constructing the perpendicular bisector ofCZ to intersectBC atX andAC atY ).
See Figure 9A. In particular, if the triangle contains a right angle, this trapezoid is
a square. See Figure 9B.
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Figure 9A

a

b
t

t

Figure 9B

3. The shoemaker’s knife

3.1. Archimedes’ Theorem.A shoemaker’s knife (or arbelos) is the region ob-
tained by cutting out from a semicircle with diameterAB the two smaller semi-
circles with diametersAP andPB. Let AP = 2a, PB = 2b, and the common
tangent of the smaller semicircles intersect the large semicircle atQ. The following
remarkable theorem is due to Archimedes. See [12].



P. Yiu 83

Theorem 1 (Archimedes). (1) The two circles each tangent toPQ, the large semi-
circle and one of the smaller semicircles have equal radiit = ab

a+b . See Figure
10A.

(2) The circle tangent to each of the three semicircles has radius

ρ =
ab(a+ b)

a2 + ab + b2
. (1)

See Figure 10B.

A BOO1 O2P

C1

C2

Q

Figure 10A

A BOO1 O2P

C

Figure 10B

Here is a simple construction of the Archimedean “twin circles”. LetQ1 and
Q2 be the “highest” points of the semicirclesO1(a) andO2(b) respectively. The
intersectionC3 = O1Q2 ∩O2Q1 is a point “above”P , andC3P = t = ab

a+b .

Construction 4. Construct the circleP (C3) to intersect the diameterAB at P1

andP2 (so thatP1 is onAP andP2 is onPB).
The centerC1 (respectivelyC2) is the intersection of the circleO1(P2) (respec-

tively O2(P1)) and the perpendicular toAB at P1 (respectivelyP2). See Figure
11.

A BOO1 O2P

C3

Q1

Q2

P2P1

C1

C2

Q

Figure 11

Theorem 2 (Bankoff [3]). If the incircleC(ρ) of the shoemaker’s knife touches the
smaller semicircles atX andY , then the circle through the pointsP ,X, Y has the
same radiust as the Archimedean circles.See Figure 12.

This gives a very simple construction of the incircle of the shoemaker’s knife.
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A BOO1 O2P

C

X

Y
C3
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Figure 13

Construction 5. LetX = C3(P )∩O1(a), Y = C3(P )∩O2(b), andC = O1X ∩
O2Y . The circleC(X) is the incircle of the shoemaker’s knife. It touches the large
semicircle atZ = OC ∩O(a + b). See Figure 13.

A rearrangement of (1) in the form
1

a+ b
+

1
ρ

=
1
t

leads to another construction of the incircle(C) by directly locating the center and
one point on the circle. See Figure 14.

A BOO1 O2P
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Q0

K

S

Q

Figure 14

Construction 6. LetQ0 be the “highest” point of the semicircleO(a + b). Con-
struct
(i) K = Q1Q2 ∩ PQ,
(ii) S = OC3 ∩Q0K, and
(iii) the perpendicular fromS toAB to intersect the lineOK atC.

The circleC(S) is the incircle of the shoemaker’s knife.

3.2. Other simple constructions of the incircle of the shoemaker’s knife.We give
four more simple constructions of the incircle of the shoemaker’s knife. The first
is by Leon Bankoff [1]. The remaining three are by Peter Woo [21].

Construction 7 (Bankoff). (1) Construct the circleQ1(A) to intersect the semi-
circlesO2(b) andO(a+ b) atX andZ respectively.

(2) Construct the circleQ2(B) to intersect the semicirclesO1(a) andO(a+ b)
at Y and the same pointZ in (1) above.
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Thecircle through X , Y , Z is the incircle of the shoemaker’s knife.See Figure
15.

Z

Y X

Q1

Q2

A BOO1 O2P

Figure 15

Z

Y
X

Q1

S

Q2

A BOO1 O2P

Figure 16

Construction 8 (Woo). (1) Construct the lineAQ2 to intersect the semicircle
O2(b) atX.

(2) Construct the lineBQ1 to intersect the semicircleO1(a) at Y .
(3) Let S = AQ2 ∩ BQ1. Construct the linePS to intersect the semicircle

O(a+ b) at Z.
Thecircle through X , Y , Z is the incircle of the shoemaker’s knife.See Figure

16.

Construction 9 (Woo). LetM be the “lowest” point of the circleO(a + b). Con-
struct
(i) the circleM(A) to intersectO1(a) at Y andO2(b) atX,
(ii) the lineMP to intersect the semicircleO(a + b) atZ.

Thecircle through X , Y , Z is the incircle of the shoemaker’s knife.See Figure
17.

Z

Y X

M

A B
OO1 O2P

Figure 17
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K1
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C

Figure 18
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Construction 10 (Woo). Constructsquares onAP andPB on the same side of
the shoemaker knife. LetK1 andK2 be the midpoints of the opposite sides ofAP
andPB respectively. LetC = AK2 ∩BK1, andX = CO2 ∩O2(b).

The circleC(X) is the incircle of the shoemaker’s knife.See Figure 18.

4. Animation of bicentric polygons

A famous theorem of J. V. Poncelet states that if between two conicsC1 andC2

there is a polygon ofn sides with vertices onC1 and sides tangent toC2, then there
is one such polygon ofn sides with a vertex at an arbitrary point onC1. See, for
example, [5]. For circlesC1 andC2 and forn = 3, 4, we illustrate this theorem by
constructing animation pictures based on simple metrical relations.

4.1. Euler’s formula. Consider the construction of a triangle given its circumcen-
terO, incenterI and a vertexA. The circumcircle isO(A). If the lineAI intersects
this circle again atX, then the verticesB andC are simply the intersections of the
circlesX(I) andO(A). See Figure 19A. This leads to the famous Euler formula

d2 = R2 − 2Rr, (2)

whered is the distance between the circumcenter and the incenter.5
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X

Figure 19A
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X

Figure 19B

4.1.1. Given a circleO(R) andr < R
2 , to construct a pointI such thatO(R) and

I(r) are the circumcircle and incircle of a triangle.

Construction 11. LetP (r) be a circle tangent to(O) internally. Construct a line
throughO tangent to the circle P (r) at a pointI.

The circleI(r) is the incircle of triangles which haveO(R) as circumcircle.See
Figure 20.

5Proof: If I is the incenter, thenAI = r

sin A
2

andIX = IB = 2R

sin A
2

. See Figure 19B. The

power ofI with respect to the circumcircle isd2 − R2 = IA · IX = −r sin A
2
· 2R

sin A
2

= −2Rr.
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4.1.2. Given a circleO(R) and a pointI, to construct a circleI(r) such thatO(R)
andI(r) are the circumcircle and incircle of a triangle.

Construction 12. Construct the circleI(R) to intersectO(R) at a pointP , and
construct the linePI to intersectO(R) again atQ. LetT be the midpoint ofIQ.

The circleI(T ) is the incircle of triangles which haveO(R) as circumcircle.
See Figure 21.

4.1.3. Given a circleI(r) and a pointO, to construct a circleO(R) which is the
circumcircle of triangles withI(r) as incircle. SinceR = r +

√
r2 + d2 by the

Euler formula (2), we have the following construction. See Figure 22.

Construction 13. Let IP be a radius ofI(r) perpendicular toIO. ExtendOP to
a pointA such thatPA = r.

The circleO(A) is the circumcircle of triangles which haveI(r) as incircle.

O

I

A
P

Figure 22

P
Q

O

I

Figure 23

4.1.4. Given I(r) andR > 2r, to construct a pointO such thatO(R) is the
circumcircle of triangles withI(r) as incircle.
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Construction 14. Extend a radiusIP to Q such thatIQ = R. Construct the
perpendicular toIP at I to intersect the circleP (Q) atO.

The circleO(R) is the circumcircle of triangles which haveI(r) as incircle.See
Figure 23.

4.2. Bicentric quadrilaterals.A bicentric quadrilateral is one which admits a cir-
cumcircle and an incircle. The construction of bicentric quadrilaterals is based on
the Fuss formula

2r2(R2 + d2) = (R2 − d2)2, (3)

whered is the distance between the circumcenter and incenter of the quadrilateral.
See [7,§39].

4.2.1. Given a circleO(R) and a pointI, to construct a circleI(r) such thatO(R)
andI(r) are the circumcircle and incircle of a quadrilateral.

The Fuss formula (3) can be rewritten as

1
r2

=
1

(R + d)2
+

1
(R− d)2

.

In this form it admits a very simple interpretation:r can be taken as the altitude
on the hypotenuse of a right triangle whose shorter sides have lengthsR ± d. See
Figure 24.

Construction 15. ExtendIO to intersectO(R) at a pointA. On the perpendicular
to IA at I construct a pointK such thatIK = R − d. Construct the altitudeIP
of the right triangeAIK.

The circlesO(R) andI(P ) are the circumcircle and incircle of bicentric quadri-
laterals.

r

R + d

R − d

O
A

I

K

P

Figure 24

O
A

K

PI

Figure 25
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4.2.2. Given a circleO(R) and a radiusr ≤ R√
2
, to construct a pointI such that

I(r) is the incircle of quadrilaterals inscribed inO(R), we rewrite the Fuss formula
(3) in the form

d2 =

(√
R2 +

r2

4
− r

2

)(√
R2 +

r2

4
− 3r

2

)
.

This leads to the following construction. See Figure 25.

Construction 16. Construct a right triangleOAK with a right angle atA,OA =
R andAK = r

2 . On the hypotenuseOK choose a pointP such thatKP = r.
Construct atangent from O to the circle P (r

2 ). LetI be the point of tangency.
The circlesO(R) andI(r) are the circumcircle and incircle of bicentric quadri-

laterals.

4.2.3. Given a circleI(r) and a pointO, to construct a circle(O) such that these
two circles are respectively the incircle and circumcircle of a quadrilateral. Again,
from the Fuss formula (3),

R2 =

(√
d2 +

r2

4
+
r

2

)(√
d2 +

r2

4
+

3r
2

)
.

Construction 17. Let E be the midpoint of a radiusIB perpendicular toOI.
Extend the rayOE to a pointF such thatEF = r. Construct atangent OT to the
circle F

(
r
2

)
. ThenOT is a circumradius.

5. Some circle constructions

5.1. Circles tangent to a chord at a given point.Given a pointP on a chordBC of
a circle(O), there are two circles tangent toBC atP , and to(O) internally. The

radii of these two circles are
BP · PC
2(R± h)

, whereh is the distance fromO to BC.

They can be constructed as follows.

Construction 18. Let M be the midpoint ofBC, andXY be the diameter per-
pendicular toBC. Construct
(i) the circle centerP , radiusMX to intersect the arcBXC at a pointQ,
(ii) the linePQ to intersect the circle(O) at a pointH,
(iii) the circleP (H) to intersect the line perpendicular toBC at P at K (so that
H andK are on the same side ofBC).

The circle with diameterPK is tangent to the circle(O). See Figure 26A.
ReplacingX by Y in (i) above we obtain the other circle tangent toBC at P

and internally to(O). See Figure 26B.

5.2. Chain of circles tangent to a chord.Given a circle(Q) tangent internally to a
circle (O) and to a chordBC at a given pointP , there are two neighbouring circles
tangent to(O) and to the same chord. These can be constructed easily by observing
that in Figure 27, the common tangent of the two circles cuts out a segment whose
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O

B
C

PM

Y

X

Q

HK

Figure 26B

midpoint isB. If (Q′) is a neighbour of(Q), their common tangent passes through
the midpointM of the arcBC complementary to(Q). See Figure 28.

Construction 19. Given a circle(Q) tangent to(O) and to the chordBC, con-
struct
(i) the circleM(B) to intersect(Q) at T1 andT2, MT1 andMT2 being tangents
to (Q),
(ii) the bisector of the angle betweenMT1 andBC to intersect the lineQT1 atQ1.

The circleQ1(T1) is tangent to(O) and toBC.
ReplacingT1 by T2 in (ii) we obtainQ2. The circleQ2(T2) is also tangent to

(O) andBC.
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5.3. Mixtilinear incircles. Given a triangleABC, we construct the circle tangent
to the sidesAB, AC, and also to the circumcircle internally. Leon Bankoff [4]
called this theA- mixtilinear incircle of the triangle. Its center is clearly on the
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bisector of angleA. Its radius isr sec2 A
2 , wherer is the inradius of the triangle.

The mixtilinear incircle can be constructed as follows. See Figure 29.
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Figure 29

Construction 20 (Mixtilinear incircle). Let I be theincenter of triangle ABC.
Construct
(i) the perpendicular toIA at I to intersectAC at Y ,
(ii) the perpendicular toAY at Y to intersect the lineAI at Ia.

The circleIa(Y ) is theA-mixtilinear incircle ofABC.

The other two mixtilinear incircles can be constructed in a similar way. For
another construction, see [23].

5.4. Ajima’s construction.The interesting book [10] by Fukagawa and Rigby con-
tains a very useful formula which helps perform easily many constructions of in-
scribed circles which are otherwise quite difficult.

Theorem 3 (Ajima). Given trianglesABC with circumcircle(O) and a pointP
such thatA andP are on the same side ofBC, the circle tangent to the linesPB,
PC, and to the circle(O) internally is the image of the incircle of trianglePBC
under the homothety with centerP and ratio1 + tan A

2 tan BPC
2 .

Construction 21 (Ajima). Given two pointsB and C on a circle (O) and an
arbitrary pointP , construct
(i) a pointA on (O) on the same side ofBC asP , (for example, by taking the
midpointM ofBC, and intersecting the rayMP with the circle(O)),
(ii) the incenter I of triangleABC,
(iii) the incenter I′ of trianglePBC,
(iv) the perpendicular toI′P at I ′ to intersectPC atZ.
(v) Rotate the rayZI′ aboutZ through an(oriented) angle equal to angleBAI to
intersect the lineAP atQ.
Then the circle with centerQ, tangent to the linesPB andPC, is also tangent to
(O) internally. See Figure 30.
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5.4.1. Th́ebault’s theorem.With Ajima’s construction, we can easily illustrate the
famous Thébault theorem. See [18, 2] and Figure 31.

Theorem 4 (Thébault). LetP be a point on the sideBC of triangleABC. If the
circles(X) and(Y ) are tangent toAP ,BC, and also internally to the circumcirle
of the triangle, then the lineXY passes through the incenter of the triangle.

5.4.2. Another example.We construct an animation picture based on Figure 32
below. Given a segmentAB and a pointP , construct thesquares APX′X and
BPY ′Y on the segmentsAP andBP . The locus ofP for whichA, B, X, Y are
concyclic is the union of the perpendicular bisector ofAB and the two quadrants
of circles withA andB as endpoints. ConsiderP on one of these quadrants. The
center of the circleABYX is the center of the other quadrant. ApplyingAjima’s
construction to the triangleXAB and the pointP , we easily obtain the circle
tangent toAP , BP , and (O). Since∠APB = 135◦ and∠AXB = 45◦, the
radius of this circle is twice the inradius of triangleAPB.

P

X′

X

Y ′

Y

A B

O

Figure 32
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6. Some examples of triangle constructions

There is an extensive literature on construction problems of triangles with cer-
tain given elements such as angles, lengths, or specified points. Wernick [20] out-
lines a project of such with three given specific points. Lopes [14], on the other
hand, treats extensively the construction problems with three given lengths such
as sides, medians, bisectors, or others. We give three examples admitting elegant
constructions.6

6.1. Construction from a sidelength and the corresponding median and angle bi-
sector. Given the length2a of a side of a triangle, and the lengthsm andt of the
median and the angle bisector on the same side, to construct the triangle. This is
Problem 1054(a) of theMathematics Magazine[6]. In his solution, Howard Eves
denotes byz the distance between the midpoint and the foot of the angle bisector
on the side2a, and obtains the equation

z4 − (m2 + t2 + a2)z2 + a2(m2 − t2) = 0,

from which he concludes constructibility (by ruler and compass). We devise a
simple construction, assuming the data given in the form of a triangleAM′T with
AT = t, AM ′ = m andM ′T = a. See Figure 33. Writinga2 = m2 + t2 − 2tu,
andz2 = m2 + t2 − 2tw, we simplify the above equation into

w(w − u) =
1
2
a2. (4)

Note thatu is length of the projection ofAM′ on the lineAT , andw is the length
of the medianAM on the bisectorAT of the sought triangleABC. The lengthw
can be easily constructed, from this it is easy to complete the triangleABC.

A

T

M ′

Q

W

M
B

C

Figure 33

6Construction 3 (Figure 7) solves the construction problem of triangleABC given angleA, side
a, and the lengtht of the bisector of angleA. See Footnote 4.
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Construction 22. (1) On the perpendicular toAM′ atM ′, choose a pointQ such
thatM ′Q = M ′T√

2
= a√

2
.

(2) Construct the circle with center the midpoint ofAM′ to pass throughQ and
to intersect the lineAT at W so thatT andW are on the same side ofA. (The
lengthw ofAW satisfies(4) above).

(3) Construct the perpendicular atW to AW to intersect the circleA(M′) at
M .

(4) Construct the circleM(a) to intersect the lineMT at two pointsB andC.
The triangleABC hasAT as bisector of angleA.

6.2. Construction from an angle and the corresponding median and angle bisector.
This is Problem 1054(b) of theMathematics Magazine. See [6]. It also appeared
earlier as Problem E1375 of theAmerican Mathematical Monthly. See [11]. We
give a construction based on Th´ebault’s solution.

Suppose the data are given in the form of a right triangleOAM , where∠AOM =
A or 180◦ − A, ∠M = 90◦, AM = m, along with a pointT onAM such that
AT = t. See Figure 34.
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Construction 23. (1) Construct the circleO(A). LetA′ be the mirror image ofA
in M . Construct the diameterXY perpendicular toAA′, X the point for which
∠AXA′ = A.

(2) On the segmentA′X choose a pointP such thatA′P = t
2 . and construct

the parallel throughP toXY to intersectA′Y atQ.
(3) ExtendXQ toK such thatQK = QA′.
(4) Construct a pointB onO(A) such thatXB = XK, and its mirror image

C in M .
TriangleABC has given angleA, medianm and bisectort on the sideBC.

6.3. Construction from the incenter, orthocenter and one vertex.This is one of the
unsolved cases in Wernick [20]. See also [22]. Suppose we put the incenterI at the
origin,A = (a, b) andH = (a, c) for b > 0. Let r be the inradius of the triangle.
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A fairly straightforward calculation gives

r2 − b− c

2
r − 1

2
(a2 + bc) = 0. (5)

If M is the midpoint ofIA andP the orthogonal projection ofH on the line
IA, then1

2(a2 + bc), being the dot product ofIM andIH, is the (signed) product
IM ·IP . Note that if angleAIH does not exceed a right angle, equation (5) admits
a unique positive root. In the construction below we assumeH closer thanA to the
perpendicular toAH throughI.

Construction 24. Given triangleAIH in which the angleAIH does not exceed
a right angle, letM be the midpoint ofIA, K the midpoint ofAH, andP the
orthogonal projection ofH on the lineIA.
(1) Construct the circleC throughP , M andK. LetO be the center ofC andQ
the midpoint ofPK.
(2) Construct a tangent fromI to the circleO(Q) intersectingC at T , with T
farther fromI than the point of tangency.

The circleI(T ) is the incircle of the required triangle, which can be completed
by constructing the tangents fromA to I(T ), and the tangent perpendicular toAH
through the “lowest” point ofI(T ). See Figure 35.

If H is farther thanA to the perpendicular fromI to the lineAH, the same
construction applies, except that in (2)T is the intersection withC closer toI than
the point of tangency.

I

A

H

M
K

PO

B C

T

Q

Figure 35

Remark.The construction of a triangle from its circumcircle, incenter, orthocenter
was studied by Leonhard Euler [8], who reduced it to the problem of trisection of
an angle. In Euler’s time, the impossibility of angle trisection by ruler and compass
was not yet confirmed.
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