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Abstract. With the availability of computer software on dynamic geometry,
beautiful and accurate geometric diagrams can be drawn, edited, and organized
efficiently on computer screens. This new technological capability stimulates
the desire to strive for elegance in actual geometric constructions. The present
paper advocates a closer examination of the geometric meaning of the algebraic
expressions in the analysis of a construction problem to actually effect a con-
struction as elegantly and efficiently as possible on the computer screen. We
present a fantasia of euclidean constructions the analysis of which make use of
elementary algebra and very basic knowledge of euclidean geometry, and focus
on incorporating simple algebraic expressions into actual constructions using the
Geometer’s Sketchpad®.

After a half century of curriculum reforms, it is fair to say that mathematicians
and educators have come full circle in recognizing the relevance of Euclidean ge-
ometry in the teaching and learning of mathematics. For example, in [15], J.
E. McClure reasoned that “Euclidean geometry is the only mathematical subject
that is really in a position to provide the grounds for its own axiomatic proce-
dures”. See also [19]. Apart from its traditional role as the training ground for
logical reasoning, Euclidean geometry, with its construction problems, provides a
stimulating milieu of learning mathematicenstructivistically One century ago,

D. E. Smith [17, p.95] explained that the teaching of constructions using ruler and
compass serves several purposes: “it excites [students’] interest, it guards against
the slovenly figures that so often lead them to erroneous conclusions, it has a gen-
uine value for the future artisan, and its shows that geometry is something besides
mere theory”. Around the same time, the British Mathematical Association [16]
recommended teaching school geometry as two parallel courSdseofemsand
Constructions “The course of constructions should be regarded asaatical
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76 Elegant geometric constructions

course, the constructions being accurately made with instruments, and no construc-
tion, or proof of a construction, should be deemed invalid by reason of its being
different from that given in Euclid, or by reason of its being based on theorems
which Euclid placed after it”.

A good picture is worth more than a thousand words. This is especially true for
students and teachers of geometry. With good illustrations, concepts and problems
in geometry become transparent and more understandable. However, the diffi-
culty of drawing good blackboard geometric sketches is well appreciated by every
teacher of mathematics. It is also true that many interesting problems on construc-
tions with ruler and compass are genuinely difficult and demand great insights for
solution, as in the case of geometrical proofs. Like handling difficult problems in
synthetic geometry with analytic geometry, one analyzes construction problems by
the use of algebra. It is well known that historically analysis of such ancient con-
struction problems as the trisection of an angle and the duplication of the cube gave
rise to the modern algebraic concept of field extension. A geometric construction
can be effected with ruler and compass if and only if the corresponding algebraic
problem is reducible to a sequence of linear and quadratic equations with con-
structible coefficients. For all the strength and power of such algebraic analysis of
geometric problems, it is often impractical to carry out detailed constructions with
paper and pencil, so much so that in many cases one is forced to settle for mere
constructibility. For example, Howard Eves, in his solution [6] of the problem
of construction of a triangle given the lengths of a side and the median and angle
bisector on the same side, made the following remark after proving constructibility.

The devotee of the game of Euclidean constructions is not really
interested in the actual mechanical construction of the sought tri-
angle, but merely in the assurance that the construction is possible.
To use a phrase of Jacob Steiner, the devotee performs his con-
struction “simply by means of the tongue” rather than with actual
instruments on paper.

Now, the availability in recent years of computer software on dynamic geome-
try has brought about a change of attitude. Beautiful and accurate geometric dia-
grams can be drawn, edited, and organized efficiently on computer screens. This
new technological capability stimulates the desire to strive for elegance in actual
geometric constructions. The present paper advocates a closer examination of the
geometric meaning of the algebraic expressions in the analysis of a construction
problem to actually effect a construction as elegantly and efficiently as possible on
the computer screehWe present a fantasia of euclidean constructions the analysis
of which make use of elementary algebra and very basic knowledge of euclidean
geometry? We focus on incorporating simple algebraic expressions into actual
constructions using th&eometer's Sketchpad®. The tremendous improvement

1See§6.1 for an explicit construction of the triangle above with a given side, median, and angle
bisector.

2TheGeometer’s Sketchpad® files for the diagrams in this paper are available from the author’s
websitehttp://www.math.fau.edu/yiu/Geometry.html.
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on the economy of time and effort is hard to exaggerate. The most remarkable fea-
ture of theGeometer's Sketchpad® is the capability of customizingtaol folder to

make constructions as efficiently as one would like. Common, basic constructions
need only be performed once, and savedbals for future use. We shall use the
Geometer's Sketchpad® simply as ruler and compass, assumirtga folder con-
taining at least the followingpols® for ready use:

(i) basic shapes such aguilateral triangle andsquare,

(i) tangents to a circle from a given point,

(iii) circumcircle andincircle of a triangle.

Sitting in front of the computer screen trying to perform geometric construc-
tions is a most ideal constructivistic learning environment: a student is to bring his
geometric knowledge and algebraic skill to bear on natural, concrete but challeng-
ing problems, experimenting with various geometric interpretations of concrete
algebraic expressions. Such analysis and explicit constructions provide a fruitful
alternative to the traditional emphasis of the deductive method in the learning and
teaching of geometry.

1. Some examples

We present a few examples of constructions whose elegance is suggested by
an analysis a little more detailed than is necessary for constructibility or routine
constructions. A number of constructions in this paper are based on diagrams in
the interesting book [9]. We adopt the following notation for circles:

(i) A(r) denotes the circle with centet, radiusr;

(i) A(B) denotes the circle with cente¥, passing through the poii, and

(iii) (A) denotes a circle with centet and unspecified radius, but unambiguous in
context.

1.1 Construct a regular octagon by cutting corners from a square.

D C D C

RN
N " Q

A x 1_9¢zPp x B A P B

Figure 1A Figure 1B

Suppose an isosceles right triangle of (shorter) sigeto be cut from each cor-
ner of a unit square to make a regular octagon. See Figure 1A. A simple calculation

shows thatr = 1 — @ This meansdP =1 —x = @ The pointP, and the

3A construction appearing igans serif is assumed to be one readily performable with a cus-
tomized tool.
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other vertices, can be easily constructed by intersecting the sides of the square with
guadrants of circles with centers at the vertices of the square and passing through
the centelO. See Figure 1B.

1.2 The centersA and B of two circles lie on the other circle. Construct a circle
tangent to the lined B, to the circle(A) internally, and to the circléB) externally.

Y c
I %
1
XA B XA M B
Figure 2A Figure 2B

SupposeAB = a. Letr = radius of the required circléK’), andz = AX,
where X is the projection of the centdt on the lineAB. We have

(a+r)?=r*+@+a)?  (a—r?=r"+2%
Subtraction givedar = o + 2az or z + % = 2r. This means that in Figure 2B,

CMXY is asquare, wher#{ is the midpoint ofA B. The circle can now be easily
constructed by first erectingsguare on C' M.

1.3 Equilateral triangle in a rectangle Given a rectanglel BC D, construct points
P and@ on BC andC' D respectively such that triangléP@ is equilateral.

Construction 1. Constructequilateral triangles CDX and BC'Y, with X andY
inside the rectangle. Extendl.X to intersectBC at P and AY to intersectC' D at

Q.
The triangleAP(Q is equilateral. See Figure 3B
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Figure 3A Figure 3B

This construction did not come from a lucky insight. It was found by an analysis.
Let AB = DC = a, BC = AD =b. If BP =y, DQ = x and APQ is
equilateral, then a calculation shows that 2a —+/3b andy = 2b — v/3a. From
these expressions efandy the above construction was devised.
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1.4. Partition of an equilateral triangle into 4 triangles with congruent incircles.
Given an equilateral triangle, construct three lines each through a vertex so that the
incircles of the four triangles formed are congruent. See Figure 4A and [9, Problem
2.1.7] and [10, Problem 5.1.3], where it is shown that if each side of the equilateral
triangle has length, then the small circles all have radiiv'7 — v/3)a. Here is a
calculation that leads to a very easy construction of these lines.

0
<
O

Y

Figure 4A Figure 4B

In Figure 4A, letCX = AY = BZ = aandBX = CY = AZ = b. The
equilateral triangleXY Z has sidelengthu — b and inradius@(a — b). Since
/ZBXC = 120°, BC = Va? + ab + b2, and the inradius of trianglB X C is

1
—(a+b—\/a2+ab+b2)tan600zg(a—kb—\/cﬂ—kab—kb?).

2

These two inradii are equal if and only3{/a? + ab + b> = 2(a+2b). Applying
the law of cosines to triangl& BC', we obtain

(a® +ab+b%) +b* —a® a+2b 3
Wv/a +ab+b2  2Valtab+ b2 4
In Figure 4B,Y” is the intersection of the aB(C') and the perpendicular from
the midpointE of C A to BC. The line BY’ makes an anglerccos% with BC.
The other two linesA X’ andC'Z’ are similarly constructed. These lines bound the

equilateral triangleX'Y Z, and the fouiincircles can be easily constructed. Their
centers are simply the reflections®fin D, Y’ in E,andZ’ in F.

cos XBC =

2. Some basic constructions

2.1 Geometric mean and the solution of quadratic equatioRse following con-
structions of the geometric mean of two lengths are well known.

Construction 2. (a) Given two segments of length b, mark three points, P,
B on aline(P betweenA and B) such thatPA = a and PB = b. Describe a
semicircle withAB as diameter, and let the perpendicular throughintersect the
semicircle atQ. ThenPQ? = AP - PB, so that the length oP( is the geometric
mean ofa andb. See Figure 5A.
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(b) Given two segments of length< b, mark three points®, A, B on a line
such thatPA = a, PB = b, and A, B are on thesameside of P. Describe a
semicircle withP B as diameter, and let the perpendicular throughintersect the
semicircle atQ. ThenPQ? = PA - PB, so that the length oP(Q is the geometric
mean ofa andb. See Figure 5B.

Figure 5A Figure 5B

More generally, a quadratic equation can be solved by applying the theorem of
intersecting chordslf a line through P intersects a circle)(r) at X andY’, then
the productPX - PY (of signed lengthsis equal toOFP — r2. Thus, if two
chordsAB and XY intersect atP, thenPA - PB = PX - PY. See Figure 6A.
In particular, if P is outside the circle, and iPT is a tangent to the circle, then
PT? = PX - PY for any line intersecting the circle & andY . See Figure 6B.

o o
Y .
Y
! w ’ ) \/ "
X T
Figure 6A Figure 6B

A quadratic equation can be put in the forrfw + a) = ¥ or x(a — =) = b
In the latter case, for real solutions, we requirec 5. If we arrangea andb as
the legs of a right triangle, then the positive roots of the equation can be easily
constructed as in Figures 6C and 6D respectively.

The algebraic method of the solution of a quadratic equation by completing
squares can be easily incorporated geometrically by using the Pythagorean theo-
rem. We present an example.
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Figure 6C Figure 6D

2.1.1 Given a chordBC perpendicular to a diametefY of circle (O), to con-
struct a line throughX which intersects the circle &t and BC atT such thatAT
has a given length. Clearly,t < Y M, whereM is the midpoint ofBC.

Let AX = z. Since/CAX = ZCYX = /TCX, the lineCX is tangent to
the circleACT. It follows from the theorem of intersecting chords thét —¢) =
CX?. The method of completing squares leads to

t f £\ 2
= — 2 —
T 2—1— CcCX —|—(2>.

This suggests the following constructibn.

Figure 7

Construction 3. On the segmen®'Y’, choose a poinP such thatC' P = % Extend
X P to @ such thatP@) = PC. Let A be an intersection ok () and (O). If the
line X A intersectsBC at T, thenAT = t. See Figure 7

4 This also solves the construction problem of trianglBC with given angleA, the lengths: of
its opposite side, and of the bisector of angle
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2.2 Harmonic mean and the equatién+ ; = 1. The harmonic mean of two
quantitiesa and b is % In a trapezoid of parallel sides and b, the parallel
through the intersection of the diagonals intercepts a segment whose length is the
harmonic mean of andb. See Figure 8A. We shall write this harmonic mean as

2t, so thatl + 1 = 1. See Figure 8B.

A b B
Figure 8A Figure 8B

Here is another construction gfmaking use of the formula for the length of an
angle bisector in a triangle. BC = a, AC = b, then the angle bisect@rZ has

length

2ab C
= cos — = 2t cos —.
a+b 2 2

The lengtht can therefore be constructed by completing the rhonth¥s7Y (by
constructing the perpendicular bisector(af to intersectBC at X andAC atY’).

See Figure 9A. In particular, if the triangle contains a right angle, this trapezoid is
a square. See Figure 9B.

C

c

a
Figure 9A Figure 9B

3. The shoemaker’s knife

3.1 Archimedes’ TheoremA shoemaker's knife (or arbelos) is the region ob-
tained by cutting out from a semicircle with diamet¢B the two smaller semi-
circles with diametersiP and PB. Let AP = 2a, PB = 2b, and the common
tangent of the smaller semicircles intersect the large semicir¢le @he following
remarkable theorem is due to Archimedes. See [12].
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Theorem 1 (Archimedes) (1) The two circles each tangent féQ), the large semi-
circle and one of the smaller semicircles have equal radi a“—& See Figure
10A.

(2) The circle tangent to each of the three semicircles has radius

ab(a + b)

= - 1
P= @ ab+ 12 @
See Figure 10B
A 6 O P 0, B

Figure 10A Figure 10B

Here is a simple construction of the Archimedean “twin circles”. Qetand
Q2 be the “highest” points of the semicirclé (a) and O, (b) respectively. The

intersectionCs; = O1Q2 N O2Q is a point “above”P, andCs P =t = a“—fb

Construction 4. Construct the circleP(Cs) to intersect the diametedB at P,
and P; (so thatP, ison AP and P, is on PB).

The centelC; (respectively(s) is the intersection of the circl®, () (respec-
tively O2(P;)) and the perpendicular tol B at P, (respectivelyP). See Figure
11

A 01 PO p / PO, B
N /

~ -

Figure 11

Theorem 2 (Bankoff [3]). If the incircle C(p) of the shoemaker’s knife touches the
smaller semicircles ak andY’, then the circle through the poinf3, X, Y has the
same radiug as the Archimedean circleSee Figure 12

This gives a very simple construction of the incircle of the shoemaker’s knife.
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Figure 12 Figure 13

Congtruction 5. Let X = C3(P)N0O;(a),Y = C3(P)NO2(b),andC = O1 X N
02Y . The circleC'(X) is the incircle of the shoemaker’s knife. It touches the large
semicircle atZ = OC N O(a + b). See Figure 13

A rearrangement of (1) in the form
1 1 1

arb o
leads to another construction of the incir¢t&) by directly locating the center and
one point on the circle. See Figure 14.

Qo

Figure 14

Construction 6. Let @), be the “highest” point of the semicircl®(a + b). Con-
struct
() K = Q1Q2N PQ,
(ll) S =0C3N Q()K, and
(iii) the perpendicular fron$ to AB to intersect the lin€ K at C.
The circleC(S) is the incircle of the shoemaker’s knife.

3.2 Other simple constructions of the incircle of the shoemaker’s kiife.give
four more simple constructions of the incircle of the shoemaker’s knife. The first
is by Leon Bankoff [1]. The remaining three are by Peter Woo [21].

Construction 7 (Bankoff). (1) Construct the circle); (A) to intersect the semi-
circlesO;(b) andO(a + b) at X and Z respectively.

(2) Construct the circlg);(B) to intersect the semicircled; (a) andO(a + b)
atY and the same poird in (1) above.
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Thecircle through X, Y, Z is the incircle of the shoemaker's knif8ee Figure
15.

Figure 15 Figure 16

Construction 8 (Woo). (1) Construct the lineAQ, to intersect the semicircle
Og(b) at X.

(2) Construct the lineBQ; to intersect the semicircl®, (a) at Y.

(3) Let S = AQ2 N BQ;. Construct the linePS to intersect the semicircle
O(a+b)atZ.

Thecircle through X, Y, Z is the incircle of the shoemaker's knif8ee Figure
16.

Construction 9 (Woo). Let M be the “lowest” point of the circleD(a + b). Con-
struct
(i) the circle M (A) to intersectO; (a) atY and O, (b) at X,
(i) the line M P to intersect the semicircl®(a + b) at Z.

Thecircle through X, Y, Z is the incircle of the shoemaker’s knif€ee Figure
17.

Figure 17 Figure 18
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Construction 10 (Woo). Constructsquares on AP and PB on the same side of
the shoemaker knife. L&f; and K5 be the midpoints of the opposite sidesAd?
and PB respectively. Le€ = AK; N BK;, and X = CO2 N Oy(b).

The circleC'(X) is the incircle of the shoemaker’s kniféee Figure 18.

4. Animation of bicentric polygons

A famous theorem of J. V. Poncelet states that if between two cén@asdCs
there is a polygon of sides with vertices o6, and sides tangent &, then there
is one such polygon af sides with a vertex at an arbitrary point 6n See, for
example, [5]. For circleg; andC; and forn = 3,4, we illustrate this theorem by
constructing animation pictures based on simple metrical relations.

4.1 Euler's formula. Consider the construction of a triangle given its circumcen-
terO, incenter! and a vertexd. The circumcircle i€)(A). If the line AT intersects
this circle again af{, then the vertice® andC are simply the intersections of the
circlesX (I) andO(A). See Figure 19A. This leads to the famous Euler formula

d* = R* — 2Rr, (2)

whered is the distance between the circumcenter and the incénter.

Figure 19A Figure 19B

4.1.1 GivenacircleO(R) andr < &, to construct a poinf such thaO(R) and
I(r) are the circumcircle and incircle of a triangle.

Construction 11. Let P(r) be a circle tangent tdO) internally. Construct a line
throughO tangent to the circle P(r) at a point/.

The circleI(r) is the incircle of triangles which haw@(R) as circumcircle.See
Figure 20.

SProof: If I is the incenter, theml = — andIX = IB = —2E_. See Figure 19B. The
sin ?

sin 4

power of I with respect to the circumcircle i — R> = IA-IX = —rsin 4 - 28 = —2Ry.
sin ?
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Ae

Figure 20 Figure 21

4.1.2 GivenacircleO(R) and a point/, to construct a circlé(r) such thaO(R)
andI(r) are the circumcircle and incircle of a triangle.

Construction 12. Construct the circle/ (R) to intersectO(R) at a point P, and
construct the linePI to intersectO(R) again at@. LetT" be the midpoint of Q).

The circleI(T) is the incircle of triangles which hav@(R) as circumcircle.
See Figure 21.

4.1.3 Given a circleI(r) and a pointO, to construct a circlé(R) which is the
circumcircle of triangles with/ (r) as incircle. SinceR = r + /72 + d? by the
Euler formula (2), we have the following construction. See Figure 22.

Construction 13. LetIP be aradius ofl (r) perpendicular to/O. ExtendOP to
a point A such thatPA = r.

The circleO(A) is the circumcircle of triangles which havér) as incircle.

Figure 22 Figure 23

4.1.4 GivenI(r) and R > 2r, to construct a poin© such thatO(R) is the
circumcircle of triangles with () as incircle.
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Construction 14. Extend a radius/ P to () such that/(Q = R. Construct the
perpendicular tal P at I to intersect the circle?(Q) at O.

The circleO(R) is the circumcircle of triangles which havér) as incircle. See
Figure 23.

4.2. Bicentric quadrilaterals.A bicentric quadrilateral is one which admits a cir-
cumcircle and an incircle. The construction of bicentric quadrilaterals is based on
the Fuss formula

2r?(R? + d*) = (R* — d*)?, (3)

whered is the distance between the circumcenter and incenter of the quadrilateral.
See [7,339].

4.2.1 GivenacircleO(R) and a point/, to construct a circlé(r) such thaO(R)
and(r) are the circumcircle and incircle of a quadrilateral.
The Fuss formula (3) can be rewritten as
1 1 1

2T R+d?  (B=dP

In this form it admits a very simple interpretation:can be taken as the altitude
on the hypotenuse of a right triangle whose shorter sides have leRgthd. See
Figure 24.

Construction 15. Extend/ O to intersectO(R) at a pointA. On the perpendicular
to I A at I construct a pointK’ such that/ K = R — d. Construct the altitudd P
of the right triangeAl K.

The circlesO(R) and(P) are the circumcircle and incircle of bicentric quadri-
laterals.

Figure 24 Figure 25
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4.2.2 Given acircleO(R) and a radiug < %, to construct a poinf such that

I(r) is the incircle of quadrilaterals inscribeddn R), we rewrite the Fuss formula
(3) in the form

This leads to the following construction. See Figure 25.

Construction 16. Construct a right triangle) AK with a right angle at4, OA =
R and AK = 3. On the hypotenus@® K choose a point’ such thatkK P = r.
Construct atangent from O to the circle P(5). Let! be the point of tangency.

The circlesO(R) and I (r) are the circumcircle and incircle of bicentric quadri-
laterals.

4.2.3 Given acirclel(r) and a pointD, to construct a circl¢O) such that these
two circles are respectively the incircle and circumcircle of a quadrilateral. Again,
from the Fuss formula (3),

2 2
SN R B B S
R <d+4+2><d+4+2.

Construction 17. Let £ be the midpoint of a radiug B perpendicular toO1.
Extend the ray) E' to a pointF’ such thatF' F' = r. Construct aangent OT to the
circle F' (%). ThenOT is a circumradius.

5. Some circle constructions

5.1 Circles tangent to a chord at a given poiriiven a pointP on a chordBC of
a circle(0O), there are two circles tangent BC' at P, and to(O) internally. The
BP - PC
radii of these two circles ar: hereh is the distance fron® to BC.
ii WO Ci CEDR W i i n® C
They can be constructed as follows.

Construction 18. Let M be the midpoint oBC, and XY be the diameter per-
pendicular toBC'. Construct
(i) the circle centerP, radius M X to intersect the ard&3 X C' at a point(),
(i) the line PQ to intersect the circléO) at a pointH,,
(iii) the circle P(H) to intersect the line perpendicular t8C' at P at K (so that
H and K are on the same side &iC").
The circle with diameteP K is tangent to the circl€O). See Figure 26A
ReplacingX by Y in (i) above we obtain the other circle tangentBt at P
and internally to(O). See Figure 26B

5.2 Chain of circles tangent to a chordsiven a circle(Q) tangent internally to a
circle (O) and to a chord3C at a given pointP, there are two neighbouring circles
tangent tq O) and to the same chord. These can be constructed easily by observing
that in Figure 27, the common tangent of the two circles cuts out a segment whose
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y @
Figure 26A Figure 26B

midpointisB. If (') is a neighbour ofQ®), their common tangent passes through
the midpoint)M of the arcBC complementary td()). See Figure 28.

Construction 19. Given a circle(Q) tangent to(O) and to the chordBC, con-
struct
(i) the circle M (B) to intersect(Q) at7; andT>, MT; and M T, being tangents
o (Q),
(ii) the bisector of the angle betweafiT; and BC to intersect the lin€)T; at Q.
The circleQ:(T1) is tangent ta/O) and toBC.
ReplacingT; by 75 in (ii) we obtain@.. The circleQs(T3) is also tangent to
(O)and BC.

Figure 27 Figure 28

5.3 Mixtilinear incircles. Given a triangleABC, we construct the circle tangent
to the sidesAB, AC, and also to the circumcircle internally. Leon Bankoff [4]
called this theA- mixtilinear incircle of the triangle. Its center is clearly on the
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bisector of angled. Its radius isr sec® %, wherer is the inradius of the triangle.
The mixtilinear incircle can be constructed as follows. See Figure 29.

A

(B

X

Figure 29

Construction 20 (Mixtilinear incircle). Let I be theincenter of triangle ABC.
Construct
(i) the perpendicular td A at [ to intersectAC at Y,
(i) the perpendicular toAY at Y to intersect the lineAl at [,.
The circlel,(Y) is the A-mixtilinear incircle of ABC'.

The other two mixtilinear incircles can be constructed in a similar way. For
another construction, see [23].

5.4. Ajima’s construction.The interesting book [10] by Fukagawa and Rigby con-
tains a very useful formula which helps perform easily many constructions of in-
scribed circles which are otherwise quite difficult.

Theorem 3 (Ajima). Given trianglesABC' with circumcircle(O) and a pointP
such thatd and P are on the same side &fC), the circle tangent to the lineB B,
PC, and to the circlg(O) internally is the image of the incircle of triangle BC
under the homothety with cent&and ratio1 + tané tan BTPC.

Construction 21 (Ajima). Given two pointsB and C' on a circle (O) and an
arbitrary point P, construct

(i) a point A on (O) on the same side dBC as P, (for example, by taking the
midpoint M of BC', and intersecting the ray/ P with the circle(O)),

(i) theincenter I of triangle ABC,

(iii) theincenter I’ of triangle PBC,

(iv) the perpendicular td’ P at I’ to intersectPC at Z.

(v) Rotate the rayZ I’ aboutZ through an(oriented angle equal to angld3 AT to
intersect the lineA P at Q.

Then the circle with centep, tangent to the line$B and PC, is also tangent to
(O) internally. See Figure 30
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Figure 30 Figure 31

5.4.1 Thébault's theoremWith Ajima’s construction, we can easily illustrate the
famous Tlebault theorem. See [18, 2] and Figure 31.

Theorem 4 (Thébault) Let P be a point on the sid&C of triangle ABC. If the
circles(X) and(Y) are tangent tod P, BC', and also internally to the circumcirle
of the triangle, then the lin&'Y” passes through the incenter of the triangle.

5.4.2 Another exampleWe construct an animation picture based on Figure 32
below. Given a segmemtB and a pointP, construct thesquares APX’'X and
BPY'Y on the segmentd P and BP. The locus ofP for which A, B, X, Y are
concyclic is the union of the perpendicular bisector4dd® and the two quadrants
of circles with A and B as endpoints. Considé? on one of these quadrants. The
center of the circledABY X is the center of the other quadrant. ApplyiAgma’s
construction to the triangleX AB and the pointP, we easily obtain the circle
tangent toAP, BP, and(O). SinceZAPB = 135° and ZAXB = 45°, the
radius of this circle is twice the inradius of triangieP B.

Figure 32
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6. Some examples of triangle constructions

There is an extensive literature on construction problems of triangles with cer-
tain given elements such as angles, lengths, or specified points. Wernick [20] out-
lines a project of such with three given specific points. Lopes [14], on the other
hand, treats extensively the construction problems with three given lengths such
as sides, medians, bisectors, or others. We give three examples admitting elegant
constructions®

6.1 Construction from a sidelength and the corresponding median and angle bi-
sector. Given the lengti2a of a side of a triangle, and the lengthsandt¢ of the
median and the angle bisector on the same side, to construct the triangle. This is
Problem 1054(a) of th&¥athematics Magazinf§]. In his solution, Howard Eves
denotes by the distance between the midpoint and the foot of the angle bisector
on the side2a, and obtains the equation

A (m? 12+ aD) +a?(m? —t%) =0,
from which he concludes constructibility (by ruler and compass). We devise a
simple construction, assuming the data given in the form of a triaAgI&l” with

AT =t, AM' = m andM'T = a. See Figure 33. Writing? = m? + t? — 2tu,
andz? = m? 4 2 — 2tw, we simplify the above equation into

w(w —u) = %aQ. 4)
Note thatu is length of the projection afiA/’ on the lineAT', andw is the length
of the medianA M on the bisectoAT of the sought triangled BC. The lengthw
can be easily constructed, from this it is easy to complete the triahgl€'.

Figure 33

®Construction 3 (Figure 7) solves the construction problem of triaddk” given angleA, side
a, and the length of the bisector of anglel. See Footnote 4.
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Construction 22. (1) On the perpendicular tal M’ at M’, choose a poinf) such
1y _ M'T _ a
that M'Q = NV
(2) Construct the circle with center the midpoint4fi/ to pass through) and
to intersect the lineAT at W so that7 and W are on the same side of. (The
lengthw of AW satisfieq4) abovg.
(3) Construct the perpendicular & to AW to intersect the circled()M) at
M.
(4) Construct the circleV/(a) to intersect the liné\/T" at two pointsB and C'.
The triangleABC has AT as bisector of anglel.

6.2 Construction from an angle and the corresponding median and angle bisector.
This is Problem 1054(b) of thilathematics MagazineSee [6]. It also appeared
earlier as Problem E1375 of tianerican Mathematical MonthlySee [11]. We
give a construction based on @lault’'s solution.

Suppose the data are given in the form of a right triadgieV/, whereZ AOM =
Aori180° — A, ZM = 90°, AM = m, along with a pointl" on AM such that
AT = t. See Figure 34.

Figure 34

Construction 23. (1) Construct the circle)(A). Let A’ be the mirror image ofA
in M. Construct the diameteK'Y" perpendicular toAA, X the point for which
/AXA = A

(2) On the segment’ X choose a point” such thatA'P = L. and construct
the parallel throughP to XY to intersect4AY at Q.

(3) ExtendX (Q to K such thatQK = QA’.

(4) Construct a pointB on O(A) such thatX B = X K, and its mirror image
CinM.

Triangle ABC has given anglel, medianm and bisectort on the sideBC'.

6.3. Construction from the incenter, orthocenter and one veriéxis is one of the
unsolved cases in Wernick [20]. See also [22]. Suppose we put the indeaattdre
origin, A = (a,b) andH = (a,c) for b > 0. Letr be the inradius of the triangle.
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A fairly straightforward calculation gives

s b—c 1,
5" 2(@ +bc) = 0. (5)

If M is the midpoint of/ A and P the orthogonal projection off on the line
I4, then3(a® 4 be), being the dot product afM andIH, is the (signed) product
IM-IP. Note that if angledl H does not exceed a right angle, equation (5) admits
a unique positive root. In the construction below we assifraoser tham to the
perpendicular tA H throughI.

r

Construction 24. Given triangle Al H in which the angledl H does not exceed
a right angle, letM be the midpoint of A, K the midpoint ofAH, and P the
orthogonal projection off on the linel A.
(1) Construct the circle through P, M and K. LetO be the center of and )
the midpoint ofP K.
(2) Construct a tangent fronf to the circle O(Q) intersectingC at 7', with T’
farther from1 than the point of tangency.

The circleI(T) is the incircle of the required triangle, which can be completed
by constructing the tangents fromto 7(7'), and the tangent perpendicular tbH
through the “lowest” point of/ (T"). See Figure 35

If H is farther thanA to the perpendicular frond to the line AH, the same
construction applies, except that in (2)is the intersection witld closer tol than
the point of tangency.

Figure 35

Remark.The construction of a triangle from its circumcircle, incenter, orthocenter

was studied by Leonhard Euler [8], who reduced it to the problem of trisection of
an angle. In Euler’s time, the impossibility of angle trisection by ruler and compass
was not yet confirmed.
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