Propuesto por Pascual Plasencia, profesor de dibujo del IES Francisco de Orellana, Trujillo. Problema 698

Construir un triángulo ABC conociendo a, m_a y w_a.

Plasencia, P. (2014): Comunicación personal.

Aporte de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba, sobre una referencia a este Problema.

Este caso de construcción del triángulo viene referenciado en la siguiente publicación:

"Lexicographical account of constructional problems of triangle geometry problems." **Source**: *Mathematicals in schools*, 1937 (5) pp. 4–30, 1937 (6) pp. 21–45, Moscow, USSR.

§ 6. Задачи, в которых дана сторона и соответственная медиана (a, m_n) .

71) a, m_a, m_b — (ППЧ) — Строим треугольник BDM по трем сторонам BD == - a, $MD = \frac{1}{3} m_a$ in $BM = \frac{2}{3} m_b$. (3a-

дача a, b, c). Продолжим BDна равное ему расстояние до точки с, а DM на вдвое большее расстояние до точки А. Соединяем A с B и C. $\triangle ABC$ искомый. Решение возможно, ес-

ли
$$4m_b - 2m_a < 3a < 4m_b + 2m_a$$
.

72) а, m_a , $b_A - (A) - Из$ формул $b_A = \frac{bc(a+b+c)(b+c-a)}{(b+c)^2}$ (51) и $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$ (47) определяем b

и c, после чего задача сведется к a, b, c. Последовательность вычислений такова. Обозначни b+c через x и bc через y^2 ; откуда $b^2+c^2=x^2-2y^2$. Исключая y^2 из формул (51) и (47), придем к биквадратному уравне-

$$\begin{array}{l} x^4 - x^2 \Big(\frac{3}{2} \; a^2 + 2 m_a{}^2 + 2 b^2_{\;{\rm A}} \; \Big) + \\ + \; \frac{a^2 \left(a^2 + 4 m_a{}^2 \right)}{2} \; , \end{array}$$

корни которого можно построить, после чего определим из (47) у2 и получим квадратное уравнение $z^2 - zx + y^2 = 0$ для определения в и с. Так как построение корней биквадратного уравнения в распространенных курсах теории геометрических построений не излагается, мы покажем последовательность построения, которая необходима в данном случае.

Решение биквадратного уравнения удобнее

$$2x^{2} = \left(\frac{3}{2}a^{2} + 2m_{a}^{2} + 2b_{A}^{2}\right) + \sqrt{\left(\frac{3}{2}a^{2} + 2m_{a}^{2} + 2b_{A}^{2}\right)^{2} - }$$

$$+ \sqrt{\frac{\left(\frac{3}{2}a^{2} + 2m_{a}^{2} + 2b_{A}^{2}\right)^{2} - }{-4 \cdot \frac{a^{2}\left(a^{2} + 4m_{a}^{2}\right)}{2}}}.$$

Строим последовательно:

1)
$$N = \sqrt{2m_a^2}$$
; 2) $M = \sqrt{2b_A^2}$;
3) $K = \sqrt{N^2 + M^2}$;
4) $L = \sqrt{a \cdot \frac{a}{2}} = \frac{a}{\sqrt{2}}$;

5)
$$E = \sqrt{a^2 + L^2}$$
; 6) $F = \sqrt{E^2 + K^2}$;
7) $H = \sqrt{a^2 + (2m_a)^2}$;
8) $I = \sqrt{H \cdot \frac{H}{2}} = \frac{H}{\sqrt{2}}$;
9) $m = \sqrt{2a \cdot l}$; 10) $n = \sqrt{F^2 + m^2}$;
11) $p = \sqrt{F^2 - m^2}$; 12) $r = \sqrt{n \cdot p}$;
13) $t = \sqrt{s^2 + r^2} = x\sqrt{2}$;
14) $u = \sqrt{l^2 - a^2}$;
15) $y = \sqrt{\left(\frac{u}{2}\right)^2 - m_a^2}$;
16) $x = \sqrt{l \cdot \frac{t}{2}}$;
17) $v = \sqrt{\left(\frac{x}{2}\right)^2 - y^2}$; 18) $b = \frac{x}{2} + v$;
19) $c = \frac{x}{2} - v$.

 73) а, m_a , b_B — Неразрешима.
 74) а, m_a , R 1° — (A) — Определяем А из условия $\sin A = \frac{a}{2R}$, после чего сведем задачу к a, A, m_a (формула 93). 2° — (Г. М — VI — ППЧ) — Из точки B

окружности О радиуса R как из центра опи-

шем дугу радиуса а до пересечения в C с окружностью O. Соединяем B и C. Из середины Kотрезка ВС как из центра описываем дугу радиуса m_{α} до пересечения в C Соединяем A с C и B.

с окружностью О . \triangle ABC искомый. Решение возможно, если $m_a \leq R + \frac{1}{2} \sqrt{4R^2 - a^2} *.$

³ По существу оба эти решения представляют собою одно и то же, так изк решение 2° начинается с построения геометрического места VI, определяющего дугу, вмещающую угол A, синус которой равен $\frac{a}{2R}$. Это замечание

относится ко всем задачам, соде жащим в числе данных а и R или A и R. Построением дуги, вмещающей угол A, определяемой отрезками а и R, или соответственно отрезка а, определяемого A и R, подобная задача сведется к одной из задач будем указывать только одно, алгебовическое, решение, которое при желании легко может быть заменено геометрическим, как показано для данного случая: а, та, R.