6.1. Construction from a sidelength and the corresponding median and angle bisector. Given the length 2a of a side of a triangle, and the lengths m and t of the median and the angle bisector on the same side, to construct the triangle. This is Problem 1054(a) of the Mathematics Magazine [6]. In his solution, Howard Eves denotes by z the distance between the midpoint and the foot of the angle bisector on the side 2a, and obtains the equation

 $z^4 - (m^2 + t^2 + a^2)z^2 + a^2(m^2 - t^2) = 0,$

from which he concludes constructibility (by ruler and compass). We devise a simple construction, assuming the data given in the form of a triangle AM'T with AT=t, AM'=m and M'T=a. See Figure 33. Writing $a^2=m^2+t^2-2tu$, and $z^2=m^2+t^2-2tw$, we simplify the above equation into

$$w(w - u) = \frac{1}{2}a^2. (4)$$

Note that u is length of the projection of AM' on the line AT, and w is the length of the median AM on the bisector AT of the sought triangle ABC. The length w can be easily constructed, from this it is easy to complete the triangle ABC.

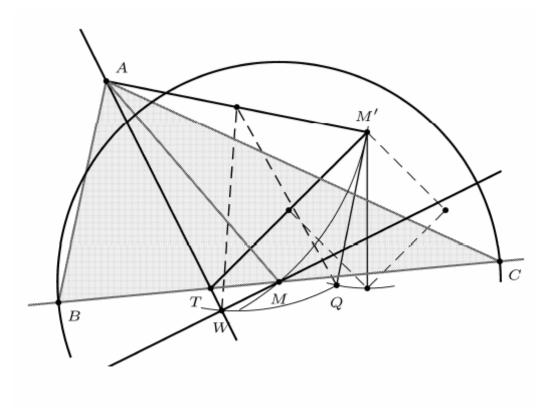


Figure 33