Solución al Problema 699 propuesto en Triángulos Cabri quincena del 15 al 28 de febrero de 2014

enviada por Andrea Fanchini Cantú, Italia.

Febrero 20, 2014

Problema 699. (Julio A. Miranda Ubaldo. Profesor de I.E.P "San Francisco de Asís", (Huaral), de Perú.) En un triángulo ABC, desde C se traza la ceviana CD (D en el segmento AB), si $AD = 4\sqrt{3}$ cm, $m \angle ABC = 110^{\circ}$, $m \angle BAC = 40^{\circ}$ y $m \angle DCA = 20^{\circ}$. Hallar BC.

Examen de Admisión a la Universidad Nacional Mayor de San Marcos (2012) - Tomado el 18 de setiembre de 2011 en la ciudad de Lima (Per'u).

Solución 699. (Andrea Fanchini, Cantú, Italia)

Por la ley de los senos aplicada a los $\triangle ACD$ tenemos que

$$\frac{CD}{\sin 40^{\circ}} = \frac{4\sqrt{3}}{\sin 20^{\circ}} \quad \Rightarrow \quad CD = 4\sqrt{3} \frac{2\sin 20^{\circ}\cos 20^{\circ}}{\sin 20^{\circ}} = 8\sqrt{3}\sin 110^{\circ}$$

Aplicando ahora la ley de los senos a los $\triangle BCD$ tenemos que

$$\frac{BC}{\sin 60^{\circ}} = \frac{CD}{\sin 110^{\circ}} \quad \Rightarrow \quad BC = 8\sqrt{3}\sin 60^{\circ}$$

Por lo tanto BC = 12 cm.