Problema 699, propuesto por Julio A. Miranda Ubaldo, profesor del I.E.P. "San Francisco de Asís", Perú. Examen de Admisión a la Universidad Nacional Mayor de San Marcos (2012), tomado el 18 de setiembre de 2011 en la ciudad de Lima (Perú).

En un triángulo ABC, desde C se traza la ceviana CD (D en el segmento AB); si AD = $4\sqrt{3}$ cm , m<ABC = 110° , m<BAC = 40° y m<DCA = 20° , Hallar BC.

Solución de Bruno Salgueiro Fanego, Viveiro, Lugo.

Del teorema de los senos primero en ADC y después en BCD, resultan CD = $4\sqrt{3}$ sen 40° /sen 20° y BC = CDsen 60° /sen 110° = 6sen 40° /(sen 20° sen 110°)

Como sen
$$40^{\circ} = -\cos(90^{\circ} + 40^{\circ}) = 0 - \cos130^{\circ} = \cos(110^{\circ} - 20^{\circ}) - \cos(110^{\circ} + 20^{\circ})$$

= $\cos110^{\circ}\cos20^{\circ} + \sin110^{\circ}\sin20^{\circ} - (\cos110^{\circ}\cos20^{\circ} - \sin110^{\circ}\sin20^{\circ}) = 2\sin20^{\circ}\sin110^{\circ}$, se obtiene BC = 12