Problema 699

En un triángulo ABC, desde C se traza la ceviana CD (D en el segmento AB). Si AD =4 $\sqrt{3}$ cm , m<ABC = 110°, m<BAC = 40° y m<DCA = 20°. Hallar BC.

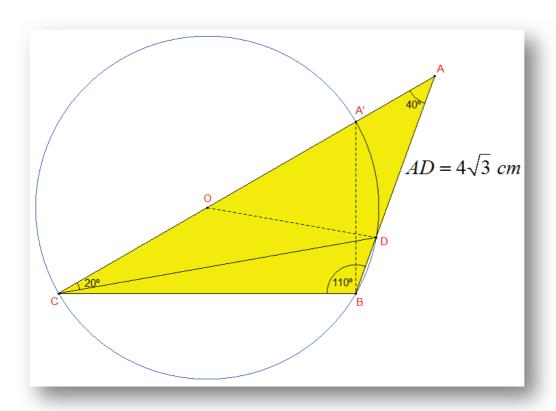
Propuesto por Julio A. Miranda Ubaldo.

Profesor de I.E.P "San Francisco de Asís". (Huaral), de Perú.

Examen de Admisión a la Universidad Nacional Mayor de San Marcos (2012)

Tomado el 18 de Setiembre de 2011 en la ciudad de Lima (Perú).

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.



Como los ángulos $\angle ACD = 20^{\circ} \ y \ \angle BAC = 40^{\circ} \Rightarrow \angle CDB = 60^{\circ} \ y$, por tanto, $\angle ACB = 30^{\circ}$

La circunferencia circunscrita al triángulo BCD será el arco-capaz de 60º del segmento BC. De esta forma, los puntos C, O (=centro de la circunferencia) y A estarán alineados. En el triángulo rectángulo A'BC tenemos que $BA' = \frac{1}{2} A'C = R \,.$

Por otra parte, el ángulo central $\angle AOD = 2\angle A'CD = 40^{\circ}$ y así, el triángulo OAD es isósceles.

Entonces OD = R =
$$4\sqrt{3}$$
 cm y, por último BC = $x = \frac{\sqrt{3}}{2}.2R = \sqrt{3}.4\sqrt{3} = 12$ cm