Problema 699

En un triangle \overrightarrow{ABC} , des de C es traça la ceviana \overrightarrow{CD} (D en el segment \overrightarrow{AB}), i $\overrightarrow{AD} = 4\sqrt{3}$, $\angle ABC = 110^{\circ}$, $\angle BAC = 40^{\circ}$, $\angle DCA = 20^{\circ}$.

Determineu la mesura del costat BC.

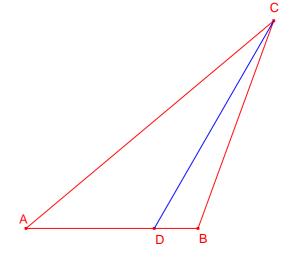
Propuesto por Julio A. Miranda Ubaldo. Profesor de I.E.P "San Francisco de Asís". (Huaral), de Perú.

Examen de Admisión a la Universidad Nacional Mayor de San Marcos(2012) - Tomado el 18 de setiembre de 2011 en la ciudad de Lima (Perú) .

Solució de Ricard Peiró:

$$\angle ACB = 30^{\circ}$$
. $\angle DCB = 10^{\circ}$, $\angle BDC = 60^{\circ}$

Aplicant el teorema dels sinus al triangle $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ADC}}$:


$$\frac{\overline{CD}}{\sin 40^{\circ}} = \frac{4\sqrt{3}}{\sin 20^{\circ}}.$$

$$\overline{CD} = 8\sqrt{3} \cdot \cos 20^{\circ}$$
.

Aplicant el teorema dels sinus al triangle $\overset{\triangle}{\mathsf{DBC}}$:

$$\frac{\overline{CD}}{\sin 110^{\circ}} = \frac{\overline{BC}}{\sin 60^{\circ}}.$$

$$\overline{BC} = \frac{8\sqrt{3}\cos 20^{o}}{\sin 70^{o}}\sin 60^{o} = 8\sqrt{3}\frac{\cos 20^{o}}{\cos 20^{o}}\frac{\sqrt{3}}{2} = 12.$$

