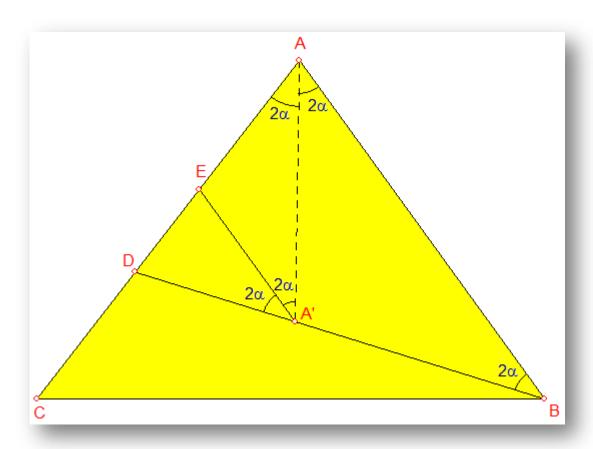
Problema 701.-

Sea un triángulo ABC. En AC se toma el punto D de modo que m<ABD = 2α y m<BAD = 4α ; Si AB/DC=13/5 y AC = BD, hallar el valor de " α ".

Propuesto por Julio A. Miranda Ubaldo. Grupo de Asesoría Matemática Fermat. (Huaral), de Perú. Origen desconocido.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Sea la siguiente configuración asociada al enunciado dado.



Trazando la bisectriz AA' del ángulo <CAB, determinamos sobre la ceviana BD dos triángulos, el triángulo isósceles AA'B y el triángulo AA'D, semejante al ABD. Procediendo de nuevo a trazar la bisectriz del ángulo <AA'D sobre AD, logramos de nuevo dos triángulos, el isósceles A'EA y el triángulo A'DE, semejante al BDA.

Si llamamos al segmento CD=m, AA'=y, AE=x, ED=z. Tenemos que $AB = \frac{13}{5}m$.

En función de m vamos a determinar las longitudes de los anteriores segmentos notables:

$$\frac{y}{\frac{13}{5}m} = \frac{x}{y} \Rightarrow \text{ A partir de la semejanza entre los triángulos AA'E y AA'B.}$$

$$\frac{z}{x} = \frac{x+z}{\frac{13}{5}m} = \frac{x}{\frac{13}{5}m-x} \Rightarrow \text{ A partir de la semejanza entre los triángulos A'ED y BAD.}$$

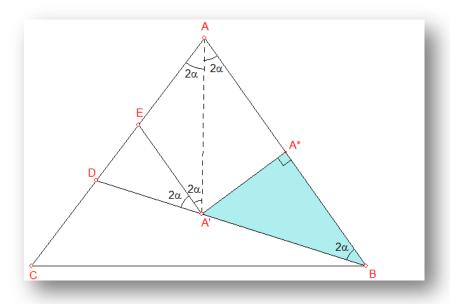
$$\frac{x}{A'D} = \frac{\frac{13}{5}m}{A'D + y} = \frac{\frac{13}{5}m - x}{y} \Rightarrow \text{ A partir de la semejanza entre los triángulos A'ED y BAD.}$$

Como, AD=BC, tenemos que x+z+m=A'D+y. Sustituyendo las expresiones anteriores y haciendo un poco de álgebra, llegamos a la siguiente relación: $65m+40x-13\sqrt{65mx}=0$

Resolviendo dicha ecuación en función de m, resulta $x = \frac{65}{64}m$ y $x = \frac{13}{5}m$.

Esta última expresión no es válida para nuestro problema.

Si
$$x = \frac{65}{64}m$$
, entonces $y = \frac{13}{8}m$ y considerando el triángulo rectángulo AA*B



$$\cos 2\alpha = \frac{\frac{13}{10}m}{\frac{13}{8}m} \Rightarrow \cos 2\alpha = \frac{4}{5}$$

Resultado que nos dice que dicho triángulo es semejante al formado por la terna pitagórica $\begin{bmatrix} 3,4;5 \end{bmatrix}$

En definitiva, $\alpha = \frac{1}{2} ArcCos[\frac{4}{5}] \Rightarrow \alpha \approx 18^{\circ} 26'$