Propuesto por Julio A. Miranda Ubaldo. Grupo de Asesoría Matemática Fermat. (Huaral), de Perú.

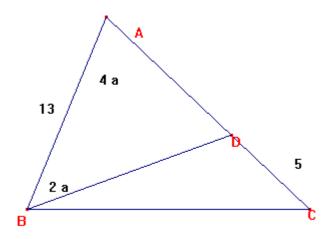
Problema 701

En un triángulo ABC, en AC se toma el punto D de modo tal que m<ABD = 2α y m<BAD = 4α ; si $\frac{AB}{DC} = \frac{13}{5}$ y AC = BD , hallar el valor de " α ".

Origen Desconocido.

Solución del director

Sea por particularizar de una manera de semejanza, AB=13, y DC=5.



Sea AD=u, AC=u+5=BD. Así en el triángulo ABD, es:

m<ABD = 2α y m<BAD = 4α , AD=u, BD=5+u.

Por la ley del seno en ABD,

AD/ sen (2α) = BD /sen (4α) .

Es sen (4α) = 2 sen (2α) cos (2α)

Y queda

 $u/sen(2\alpha) = (u+5)/(2 sen(2\alpha) cos(2\alpha))$

De donde, $\cos (2\alpha)=(5+u)/(2u)$.

Por el teorema del coseno en ABD,

$$u^2 = (5+u)^2 + 13^2 - 2(13)(5+u)\frac{(5+u)}{2u}$$

Esta ecuación queda así, tras desarrollar y simplificar:

$$3u^2 - 64 u + 325 = 0$$

Que tiene dos soluciones: u=13, u=25/3.

La primera se descarta pues nos daría ABD isósceles, con m<ABD = 2α y m<BAD = 4α , m<ADB= 2α , lo que no es un triángulo asumible, pues sería rectángulo y de lados 13, 13, 18.

La segunda, u=25/3, da lugar a cos $(2\alpha)=(5+(25/3))/(2(25/3))=4/5$;

Así, es $2\alpha = 36,87^{\circ}$.

Ricardo Barroso Campos.

Jubilado.

Sevilla