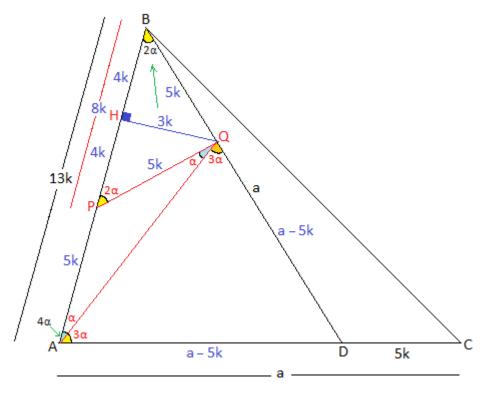
Propuesto por Julio A. Miranda Ubaldo. Grupo de Asesoría Matemática Fermat. (Huaral), de Perú.

Problema 701

En un triángulo ABC, en AC se toma el punto D de modo tal que m<ABD = 2α y m<BAD = 4α ; si $\frac{AB}{DC} = \frac{13}{5}$ y AC = BD , hallar el valor de " α ".

Origen Desconocido

Primera Solución:



Si AC = BD = a entonces: AD = a - 5k.

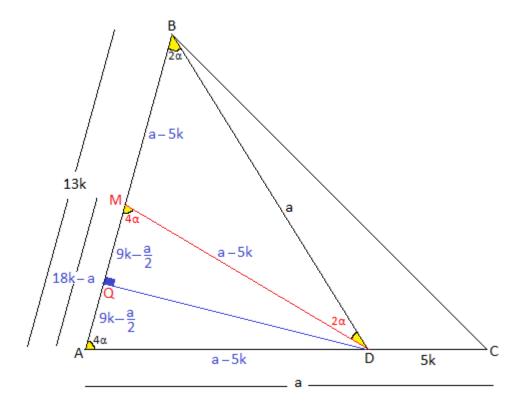
Desde A trazo la ceviana AQ (Q en BD) de modo tal que m<BAQ = α entonces: m<QAD = 3α . En el triángulo ABQ : m<AQD = 3α luego el triángulo AQD es isósceles entonces QD = a-5k, en BD : BQ = 5k.

En el triángulo AQB trazo la ceviana QP (P en AB) siendo m<AQP = α por lo tanto el triángulo APQ es isósceles (AP = PQ) asimismo m<BPQ = 2α luego el triángulo PBQ es isósceles (PQ = QB = 5k) Luego en AB : PB = 8k y AP = 5k

En el triángulo PBQ se traza la altura QH relativa a PB entonces PH = HB = 4k luego QH = 3k. Finalmente en el triángulo QHB que es un T.R.N (37° - 53°) se deduce que: $2\alpha = 36^{\circ} 52' 11.63''$

Por lo tanto: $\alpha = 18^{\circ} \ 26' \ 5.82''$

Segunda Solución:



Desde D trazo la ceviana DM (M en AB) de modo tal que m<MDB = 2α por lo tanto el triángulo BMD es isósceles (BM = MD).

Asimismo m <DMA = 4α por lo tanto el triángulo MAD es isósceles (MD = AD = a - 5k), también como BM = MD entonces BM = a - 5k y en AB (AM = 18k - a).

Desde D trazo la altura DQ (Q en AM), como el triángulo MAD es isósceles entonces : AQ = QM = $9k - \frac{a}{2}$

Por lo tanto : QB =
$$4k + \frac{a}{2}$$

Por el teorema de las proyecciones en el triángulo ABD:

$$BD^2 - BQ^2 = AD^2 - QA^2$$

Luego de acuerdo a la figura :
$$a^2 - (4k + \frac{a}{2})^2 = (a - 5k)^2 - (9k - \frac{a}{2})^2$$

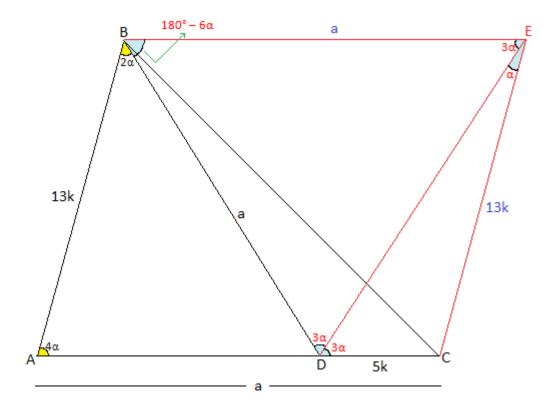
Reduciendo se obtiene:
$$k = \frac{3a}{40}$$

Reemplazando esta valor en el triángulo QMD : MD =
$$\frac{25}{40}$$
 y MQ = $\frac{7}{40}$

Por el teorema de Pitágoras en dicho triángulo : QD =
$$\frac{24}{40}$$

Es fácil darse cuenta que el triángulo QMD es un T.R.N (74° - 16°) por lo tanto : 4α = 73°44′23.26″ Finalmente : α = 18° 26′ 5.82″

Tercera Solución:



Desde B y c trazamos rectas paralelas a AC y AB respectivamente cortándose estas en E obteniéndose el romboide ABEC , luego EC = 13k y BE = a

Asimismo m<BED = 180° - 6α

El triángulo BDE es isósceles (BD = BE = a) entonces: $m < BDE = m < BED = 3\alpha$

En el romboide ABEC: m<BEC = 4α entonces: m<DEC = α

De otro lado es fácil darse cuenta que m<EDC = 3α

En el triángulo DEC por la ley de los senos : $\frac{13k}{sen(3\alpha)} = \frac{5k}{sen(\alpha)}$

Simplificando: $13sen(\alpha) = 5sen(3\alpha)$

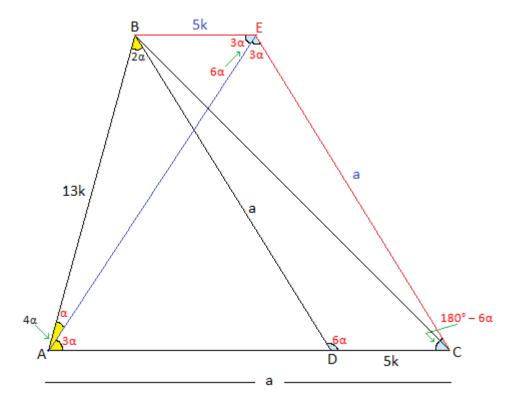
Por seno del ángulo triple: $13sen(\alpha) = 5(3sen(\alpha) - 4sen^3(\alpha))$

Reduciendo la ecuación se obtendrá: $sen(\alpha) = \pm \frac{\sqrt{10}}{10}$

Tomando el valor positivo de $sen(\alpha)$ se tiene que : $\alpha = 18^{\circ} 26' 5.82''$

El valor negativo de $sen(\alpha)$ haría que el valor de α fuese mayor de 180° que de por sí es inaceptable.

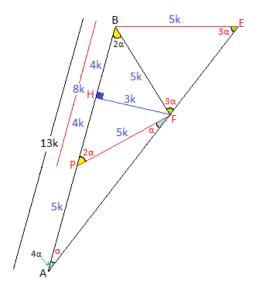
Cuarta Solución:



Desde B y C trazamos las rectas paralelas a DC y BD respectivamente cortándose éstas en E obteniéndose el romboide DBEC luego BE = 5k y EC = a.

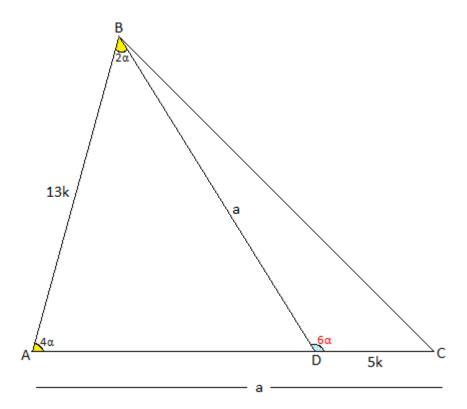
En dicho romboide: m<BDC = 6α ; m<BEC = 6α y m<ECD = 180° - 6α .

Unamos A y E obteniéndose el triángulo isósceles ACE (AC = EC = a) entonces: m<EAC = m<CEA = 3α . Es allí donde en vez de usar la Ley de los Senos efectuaremos algunos trazos auxiliares para obtener geométricamente el valor de " α ", observemos la siguiente figura:



El triángulo BHF es un T.R.N (37° - 53°) , luego: $2\alpha = 36^{\circ}5211.63$ " entonces : $\alpha = 18^{\circ}26'5.82$ "

Quinta Solución:



En primer lugar : m<BDC = 6α

Calculamos el área del triángulo ABD y el área del triángulo BDC usando en ambos casos la fórmula trigonométrica :

$$A_{\Delta ABD} = \frac{13k.a}{2} sen(2\alpha) ...(1)$$

$$A_{\Delta BDC} = \frac{5k.a}{2} sen(6\alpha)$$
 ...(2)

Análogamente el área del triángulo ABC será : $A_{\Delta\!A\!B\!C}=\frac{13k.a}{2}sen(4\alpha)$...(3)

Es fácil darse cuenta que : $A_{\Delta\!A\!B\!D} + A_{\Delta\!B\!D\!C} = A_{\Delta\!A\!B\!C} \quad ...$ (4)

Reemplazando (1), (2) y (3) en (4):

$$\frac{13k.a}{2}sen(2\alpha) + \frac{5k.a}{2}sen(6\alpha) = \frac{13k.a}{2}sen(4\alpha)$$

Luego:
$$13sen(2\alpha) + 5sen(6\alpha) = 13sen(4\alpha)$$
 ...(5)

Hagamos un cambio de variable : $2\alpha = m$

Entonces en (5): 13sen(m) + 5sen(3m) = 13sen(2m)

Ahora aplicando la fórmula del ángulo triple y del ángulo doble se tendrá:

$$13sen(m) + 5(3sen(m) - 4sen^{3}(m)) = 13(2sen(m)cos(m))$$

luego:
$$28sen(m) - 20sen^{3}(m) = 26sen(m)\cos(m)$$

Simplificando:
$$14 - 10sen^2(m) = 13cos(m)$$
 ...(6)

Como :
$$sen^2(m) = 1 - cos^2(m)$$
 entonces en (6): $10cos^2(m) - 13cos(m) + 4 = 0$

Resolviendo esta ecuación de segundo grado se obtiene:

$$\cos(m) = \frac{4}{5} \quad \acute{o} \quad \cos(m) = \frac{1}{2}$$

Por lo tanto: $m = 36^{\circ}52'11.63'' \ \acute{o} \ m = 60^{\circ}$

Volviendo a la variable original: $2\alpha = 36^{\circ} 52^{\circ} 11.63'' \dot{o} 2\alpha = 60^{\circ}$

Finalmente: $\alpha = 18^{\circ} 26' 5.82''$ ó $\alpha = 30^{\circ}$

El valor de $\alpha=30^\circ$ queda descartado, pues este valor hace inexistente al triángulo ABC.

JULIO A MIRANDA UBALDO

Profesor del Grupo de Asesoría Matemática Fermat Huaral-Perú