Problema n°701

Propuesto por Julio A. Miranda Ubaldo. Grupo de Asesoría Matemática Fermat. (Huaral), de Perú

En un triángulo ABC, en AC se toma el punto D de modo tal que m<ABD = 2α y m<BAD = 4α ; si AB/DC=13/5 y AC = BD , hallar el valor de " α ". Origen desconocido.

Solution proposée par Philippe Fondanaiche

Rappelons le théorème de l'angle double dans un triangle ABC.

Les mesures de deux angles d'un triangle sont dans le rapport de 2 à 1 si et seulement si les trois côtés sont dans les rapports de $1:x:x^2-1$ avec l'angle opposé au côté correspondant à x qui est le double de l'angle opposé au côté correspondant à 1.

Démonstration

Soit un triangle ABD dont les angles 2α , 4α , $\pi - 6\alpha$ ($\alpha > 0$) sont opposés aux côtés AD = b, BD = a et AB = d.

On a tout d'abord $sin(\pi - 6\alpha) = sin(6\alpha) = 3sin(2\alpha) - 4 sin^3(2\alpha)$.

D'autre part la loi des sinus dans le triangle ABD donne les égalités :

b : a : d = $\sin(2\alpha)$: $\sin(4\alpha) = \sin(\pi - 6\alpha) = 3\sin(2\alpha) - 4\sin^3(2\alpha)$.

b: a: $d = 1 : 2\cos(2\alpha) = 3 - 4\sin^2(2\alpha)$.

 $b:a:d = 1:2\cos(2\alpha) = 4\cos^2(2\alpha) - 1.$

 $b: a: d = 1: x: x^2 - 1 \text{ avec } 1 < x = 2\cos(2\alpha) < 2$

Une autre façon d'exprimer ces égalités est d'écrire $a^2 = b(b + d)$

D'après les hypothèses de l'énoncé, on a BD = a = AC = AD + DC = b + 5d/13. Soit b : b + 5d/13 : $d = 1 : 1 + 5b/13d : b/d = 1 : x : x^2 - 1$.

Soit y = b/d .D'où l'équation quadratique en $y : (1 + 5y/13)^2 - 1 = y$ qui donne 5(25y - 39) = 0. Comme $y \ne 0$, on a la solution unique y = 39/25 = 1.56 et x = (1 + 5y/13) = 1.6. Il en résulte une famille de triangles ABD semblables au triangle primitif de côtés a = 40, b = 25 et d = 39.

L'angle α est tel que $\cos(2\alpha) = 1.6/2 = 0.8$. D'où $\alpha = \arccos(0.8)/2 = 18^{\circ}.434948$..