Pr. Cabri 702 por César Beade Franco

Enunciado

Dado un triángulo cualquiera de lados cuyas longitudes son "a", "b" y "c". Al variar a, b y c, encontrar el rango de $\frac{a^2+b^2+c^2}{ab+bc+ca}$

Asimismo obtener el rango de $\frac{(a+b+c)^2}{ab+bc+ca}$

Solución

I. Como los anteriores cocientes no varían al multiplicar las medidas de los lados por un número y suponiendo $a \le b \le c$, dividiendo por a, podemos considerar que estas valen $1 \le 1+x \le 1+y$, con $0 \le y-x < 1$.

II. Entonces
$$\frac{a^2+b^2+c^2}{ab+bc+ca} = \frac{1+(1+x)^2+(1+y)^2}{(1+x)+(1+x)(1+y)+(1+y)} = \frac{3+2\,x+2\,y+x^2+y^2}{3+2\,x+2\,y+xy} \ge 1, \quad pues \quad x^2 + y^2-xy \\ = x^2 + y^2-2xy = (x-y)^2 \ge 0.$$

La igualdad se da si x=y=0.

$$\text{III. Tambi\'en } \frac{3+2\,x+2\,y+x^2+y^2}{3+2\,x+2\,y+xy} \ = \ \frac{3+2\,x+2\,y+x^2+y^2+xy-xy}{3+2\,x+2\,y+xy} \ = \ 1 \ + \ \frac{x^2+y^2-xy}{(1+x)+(1+x)\,(1+y)+(1+y)} \ = \ 1 \ + \ \frac{(x-y)^2+xy}{(1+x)+(1+y)+(1+x)\,(1+y)} \ < \ 2,$$

pues
$$(x-y)^2 < (1+x) + (1+y)$$
, $xy < (1+x)(1+y)$. Además, si $x=y$,

$$lim_{x\to\infty} \ \tfrac{(x-y)^2+xy}{(1+x)+(1+y)+(1+x)\,(1+y)} \ = \ 1$$

IV. Combinado II y III deducimos que $1 \le \frac{a^2 + b^2 + c^2}{ab + bc + ca} < 2$.

V. Ahora es fácil hallar el rango del otro cociente pues $\frac{(a+b+c)^2}{ab+bc+ca} = \frac{(a^2+b^2+c^2)+2\,(ab+bc+ca)}{ab+bc+ca}$ de lo que se deduce que $3 \le \frac{(a+b+c)^2}{ab+bc+ca} < 4$