Problema 702.-

Dado un triángulo cualquiera de lados cuyas longitudes son a, b y c. Al variar a, b y c, encontrar el rango de: $(a^2+b^2+c^2)/(ab+bc+ca)$ (I). Asimismo obtener el rango de: $(a+b+c)^2/(ab+bc+ca)$ (II).

Variante de un problema propuesto en el examen de admisión al Instituto de Tecnología de Tokio (Japón) – 2010

Propuesto por Julio A. Miranda Ubaldo. Grupo de Asesoría Matemática Fermat. (Huaral), de Perú.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Por la simetría de las expresiones (I) y (II) sabemos que en el caso de ser las longitudes a, b y c iguales, entonces dichas expresiones alcanzarán un extremo absoluto.

Caso I:

En el caso del triángulo equilátero, tenemos que: $\frac{a^2+b^2+c^2}{ab+ac+bc}=(a=b=c)=1$

Para cualquier otro caso: $\frac{a^2+b^2+c^2}{ab+ac+bc} = \frac{2(bc\cos A + ac\cos B + bc\cos C)}{ab+ac+bc} \le \frac{2(bc+ac+bc)}{ab+ac+bc} \le 2$

 $1 \le \frac{a^2 + b^2 + c^2}{ab + ac + bc} \le 2$ En definitiva,

Caso II:

En el caso del triángulo equilátero, tenemos que: $\frac{(a+b+c)^2}{ab+ac+bc} = (a=b=c) = \frac{9a^2}{3a^2} = 3$

En el caso de que el triángulo sea degenerado (c=0) tenemos que la expresión (II) será máxima cuando

a=b. En este caso, la expresión (II) adoptará la siguiente forma: $\frac{(a+b+c)^2}{ab+ac+bc} = \frac{(a+b)^2}{ab} = (a=b) = 4$

En definitiva, $3 \le \frac{(a+b+c)^2}{ab+ac+bc} \le 4$