Propuesto por Julio A. Miranda Ubaldo. Grupo de Asesoría Matemática Fermat. (Huaral), de Perú.

Problema 702

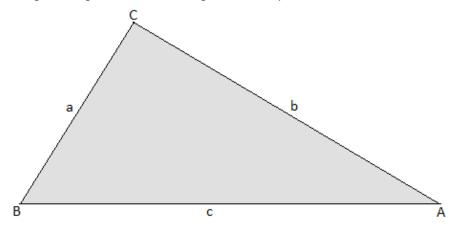
Dado un triángulo cualquiera de lados cuyas longitudes son "a", "b" y "c". Al variar a , b y c, encontrar el

rango de:
$$\frac{a^2 + b^2 + c^2}{ab + bc + ca}$$
 . Asimismo obtener el rango de: $\frac{(a+b+c)^2}{ab+bc+ca}$

Variante de un problema propuesto en el examen de admisión al Instituto de Tecnología de Tokio (Japón) – 2010

Solución por Julio A. Miranda Ubaldo. Grupo de Asesoría Matemática Fermat. (Huaral),:

En la siguiente figura se tiene un triángulo ABC cualquiera:



Donde $c \ge b \ge a$...(1)

Por propiedad de la existencia respecto a "c":

$$b-a < c$$

Luego: $(b-a)^2 < c^2$, desarrollando el binomio: $b^2 + a^2 - 2ab < c^2$...(2)

Análogamente para los demás lados del triángulo:

$$c^2 + a^2 - 2ac < b^2$$
 ...(3)

$$c^2 + b^2 - 2bc < a^2$$
 ...(4)

Sumando (2), (3) y (4) tendremos: $a^2 + b^2 + c^2 < 2(ab + ac + bc)$...(5)

Por otro lado de (1): $b-a \ge 0$ entonces: $(b-a)^2 \ge 0$ por lo tanto: $b^2+a^2 \ge 2ab$...(6)

Análogamente para $c-a \ge 0$ se tiene: $c^2+a^2 \ge 2ac$...(7)

Para $c - b \ge 0$: $c^2 + b^2 \ge 2bc$...(8)

Sumando (6), (7) y (8): $a^2 + b^2 + c^2 \ge ab + ac + bc$ o bién : $ab + ac + bc \le a^2 + b^2 + c^2$...(9)

De (5) y (9): $ab + ac + bc \le a^2 + b^2 + c^2 < 2(ab + ac + bc)$...(10)

Finalmente de (10) : $1 \le \frac{a^2 + b^2 + c^2}{ab + ac + bc} < 2$...(11) l.q.q.d

Se sabe que: $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+ac+bc)$

De donde: $(a+b+c)^2 - 2(ab+ac+bc) = a^2 + b^2 + c^2$...(12)

Reemplazando (12) en (10):

 $ab + ac + bc \le (a + b + c)^2 - 2(ab + ac + bc) < 2(ab + ac + bc)$

Reduciendo: $3(ab + ac + bc) \le (a + b + c)^2 < 4(ab + ac + bc)$...(13)

Finalmente de (13): $3 \le \frac{(a+b+c)^2}{ab+ac+bc} < 4$ l.q.q.c

JULIO A. MIRANDA UBALDO

Profesor del Grupo de Asesoría Matemática Fermat Huaral-Perú