Problema 702

Dado un triángulo cualquiera de lados cuyas longitudes son "a", "b" y "c". Al variar a , b y c, encontrar el rango de: $(a^2+b^2+c^2)/(ab+bc+ca)$.

Asimismo obtener el rango de: $(a+b+c)^2/(ab+bc+ca)$

Variante de un problema propuesto en el examen de admisión al Instituto de Tecnología de Tokio (Japón) – 2010

Solution proposée par Philippe Fondanaiche, Paris, France

Réponse : les ratios $(a^2+b^2+c^2)/(ab+bc+ca)$ et $(a+b+c)^2/(ab+bc+ca)$ appartiennent respectivement aux intervalles [1,2] et [3,4].

 Q_1 Soit $r_1 = (a^2 + b^2 + c^2)/(ab + bc + ca)$ avec a,b et c qui sont les dimensions d'un triangle ABC quelconque.

On suppose sans perte de généralité que $a \ge b \ge c$ avec la condition $b + c \ge a$ et que le triangle ABC peut être dégénéré avec a = b + c..

On pose p = b/a et q = c/a. Les conditions précédentes deviennent $q \le p \le 1$ avec $p + q \ge 1$. En divisant le numérateur et le dénominateur de la fraction r_1 par a^2 , on obtient $r_1 = (1 + p^2 + q^2)/(p + pq + q)$

On démontre que $1 \le r_1 \le 2$.

En effet:

- 1) $(1+p^2+q^2)/(p+pq+q) \geq 1 \Leftrightarrow 1+p^2+q^2 \geq p+pq+q \Leftrightarrow p^2+q^2-2pq \geq p+q-pq-1 \Leftrightarrow (p-q)^2 \geq (p-1)(q-1). \text{ Or } 1-q \geq 0 \text{ et } p-1 \leq 0 \text{ .Donc } (1+p^2+q^2)/(p+pq+q) \geq 1 \Leftrightarrow (p-q)^2 \geq 0.C.q.f.d.$ La valeur $r_1=1$ est obtenue pour $p=q=1 \Leftrightarrow a=b=c$. Le triangle ABC est équilatéral.
- 2) $(1 + p^2 + q^2)/(p + pq + q) \le 2 \Leftrightarrow 1 + p^2 + q^2 \le 2 \ p + 2pq + 2q \Leftrightarrow p^2 + q^2 2pq \le 2(p + q) 1$. Comme $p + q \ge 1$, on a $2(p + q) 1 \ge 1$ et $p^2 + q^2 2pq = (p q)^2 \le 1$ ou encore $(1 + p^2 + q^2)/(p + pq + q) \le 2 \Leftrightarrow p q \le 1$. C.q.f.d. La valeur $r_1 = 2$ est obtenue avec le triangle dégénéré a = b et c = 0.

Q₂ Soit $r_2 = (a + b + c)^2/(ab + bc + ca)$. On a $r_2 = (a^2 + b^2 + c^2 + 2ab + 2bc + 2ca)/(ab + bc + ca) = r_1 + 2$. D'où le résultat $3 \le r_2 \le 4$.