Problema 704.-

Sea un triángulo ABC, con su circuncentro en O. Sea la suma vectorial OA+OB+OC=OD. Hallar D.

Leversha, G. (2013): The Geometry of the triangle. The United Kingdom Mathematics Trust.

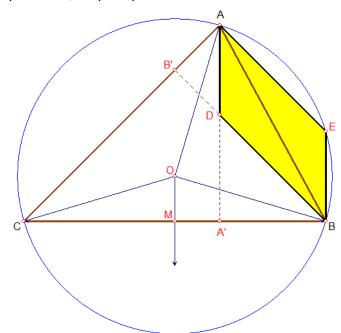
Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Nos basamos en este resultado conocido de Geometría elemental:

"Sea el triángulo ABC y D su ortocentro. Consideremos la circunferencia circunscrita a dicho triángulo, de centro O. Si M es el punto medio de BC, entonces $AD = 2 \cdot OM$ "

Dem.-

Si la perpendicular por B a BC corta a la circunferencia en E, entonces CE es un diámetro de la misma, y por tanto, CE pasa por O.



Al considerar el triángulo BCE, se tendrá que OM es la paralela media del lado BE;

Entonces, $BE = 2 \cdot OM$.

Por otra parte, si trazamos el cuadrilátero ADBE resulta ser un paralelogramo, pues AD y BE son ambos perpendiculares al lado BC, y lo mismo sucede con AE y BD al ser también perpendiculares al lado AC.

Luego entonces se tendrá que AD =BE =2·OM

Vectorialmente, este resultado equivale a:

$$\overrightarrow{OB} + \overrightarrow{OC} = 2.\overrightarrow{OM} = \overrightarrow{AD}$$

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{OD}$$

En definitiva, el punto D es el ortocentro del triángulo ABC.