Problema 705.

Propuesto por Gàbor Hollò

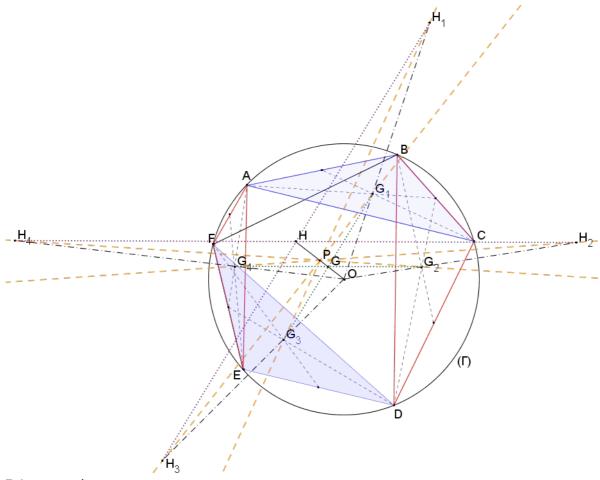
Seis puntos diferentes están en una circunferencia. Se seleccionan tres, y se halla el ortocentro del triángulo que forman. Con los restantes puntos se construye otro triángulo y se halla el baricentro del mismo.

Se traza la recta que pasa por ambos puntos notables. Demostrar que todas las rectas así construidas son concurrentes.

Halló, G. (2014): Comunicación personal.

Solution proposée par Philippe Fondanaiche, Paris, France

Réponse : Parmi six points A,B,C,D,E,F tracés sur la circonférence d'un cercle (Γ),il y a $C(6,3) = 6 !/(3 !)^2 = 20$ façons de choisir 3 sommets d'un premier triangle T_1 , les trois points restants étant les sommets d'un deuxième triangle T_2 . Il y a donc 20 droites qui joignent le centre de gravité du premier triangle à l'orthocentre du deuxième triangle. Si on désigne par G le barycentre des six points A,B,C,D,E affectés des mêmes poids, les 20 droites se rencontrent en un même point P situé sur la droite OG tel que OP = 3OG/2.



Démonstration

Soit ABC un premier triangle inscrit dans le cercle (Γ) de centre de gravité G_1 et d'orthocentre H_1 . Son homologue est le triangle DEF de centre de gravite G_3 et d'orthocentre H_3 . Les points G_1 et H_1 d'une part et G_3 et H_3 d'autre part sont sur les droites d'Euler des deux triangles et l'on a les relations $OH_1 = 2OG_1$ et $OH_3 = 2OG_3$.

On construit de la même manière les point G_2,H_2 puis G_4 et H_4 à partir des triangles BCD et AEF et l'on a les relations $OH_2 = 2OG_2$ et $OH_4 = 2OG_4$.

Le barycentre G des points A,B,C,D,E et F affectés des mêmes poids est obtenu en prenant le milieu de G_1G_3 . Il en résulte que ce point est également le milieu de G_2G_4 . De manière plus

générale ,les droites qui relient les couples des centres de gravité $\binom{G_i,G_j}{}$ avec $1 \le i \ne j \le 20$ des 20 paires de triangles du type (ABC) et (DEF) sont toutes concourantes au point G.

Comme les points H_i ($1 \le i \le 20$) sont tous homothétiques des points G_i dans la même homothétie de centre O et de rapport 2, les droites qui relient les couples d'orthocentres (

 H_i, H_j) $1 \le i \ne j \le 20$ des 20 paires de triangles sont toutes concourantes en un point H tel que les points O,G,H sont alignés avec OH = 2OG.

Dans le trapèze isocèle $G_1G_3H_3H_1$, les diagonales H_1G_3 et H_3G_1 se rencontrent en un point P situé sur le segment GH.On a PH = 2PG, ce qui revient à dire que P est le milieu de OH ou encore OP = 3OG/2. De la même manière H_2G_4 et H_4G_2 se rencontrent au même point P et il en est ainsi pour les 18 autres droites qui joignent le centre de gravité et l'orthocentre des 18 autres paires de triangles.