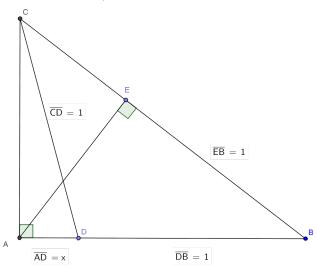
Solución al Problema 711 propuesto en Triángulos Cabri quincena del 16 al 31 de mayo de 2014

enviada por Andrea Fanchini Cantú, Italia.


Mayo 16, 2014

Problema 711.

En un triángulo ABC rectángulo en A, tenemos AE altura tal que EB=1. Sobre AB tenemos D tal que CD=DB=1. Hallar

Honsberger, R. (2003) Mathematical Diamonds. MAA (p. 204).

Solución 711. (Andrea Fanchini, Cantú, Italia)

Ponemos AD = x.

Aplicando el teorema de Pitagora al $\triangle EAB \implies AE = \sqrt{x^2 + 2x}$. Con Pitagora al $\triangle ACD \implies AC = \sqrt{1 - x^2}$.

Siempre con Pitagora al $\triangle ABC \implies BC = \sqrt{2+2x}$.

Ahora tenemos que

$$\frac{AB \quad AC}{2} = \frac{BC \quad AE}{2} \quad \Rightarrow \quad (1+x)\sqrt{1-x^2} = \sqrt{2+2x}\sqrt{x^2+2x}$$

Haciendo operaciones, desarrollando y simplificando, se obtiene

$$(x+1)(x^3+3x^2+3x-1)=0$$

Descartando la solución negativa y las dos soluciones complejas, tenemos que el segundo factor se puede escribir

$$(x+1)^3 - 2 = 0$$
 \Rightarrow $x = AD = \sqrt[3]{2} - 1 \approx 0, 26.$