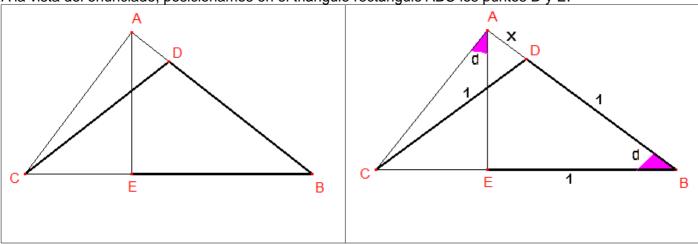
Problema 711

En un triángulo ABC rectángulo en A, tenemos AE altura tal que EB=1. Sobre AB tenemos D tal que CD=DB=1. Hallar AD.

Honsberger, R (2003). Mathematical Diamonds. MAA (p 204)

Solución de Florentino Damián Aranda Ballesteros, profesor de Matemáticas del IES Blas Infante en Córdoba.

A la vista del enunciado, posicionamos en el triángulo rectángulo ABC los puntos D y E.



Sea x=AD.

Si llamamos α , a uno de los ángulos agudos del triángulo ABC, por ejemplo α =<ABC, entonces el ángulo en D del triángulo rectángulo ADC será 2α y, por tanto, $\sin 2\alpha$ =AC.

Por otro lado, en el triángulo rectángulo ABE, tenemos que, $\sin \alpha = AE/(1+x)$ y $\cos \alpha = 1/(1+x)$ (I).

Por tanto, $AC = \sin 2\alpha = 2 \sin \alpha$. $\cos \alpha = 2AE/(1+x)^2$

Así tenemos que: $AE/AC = (1+x)^2/2$ (II)

Ahora bien, en el triángulo rectángulo ACE, $\cos \alpha = AE/AC$.

Así podemos igualar las anteriores expresiones (I) y (II) de cosα.

$$1/(1+x) = (1+x)^2/2 \rightarrow (1+x)^3 = 2 \rightarrow x = \sqrt[3]{2} - 1$$

En definitiva, $AD = \sqrt[3]{2} - 1$