Problema 711

En un triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$ rectángulo en A, tenemos $\overline{\mathsf{AE}}$ altura tal que $\overline{\mathsf{EB}}=1$.

Sobre \overline{AB} tenemos D tal que $\overline{CD} = \overline{DB} = 1$.

Hallar \overline{AD} .

Honsberger, R. (2003) Mathematical Diamonds. MAA (p. 204)

Solución de Ricard Peiró:

Sea
$$\overline{AD} = x$$
.

El circuncentro e 'un triángulo rectángulo es el punto medio de la hipotenusa.

Sea O el circuncentro.

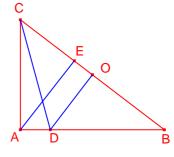
 $\overline{CD} = \overline{DB} = 1$, entonces D pertenece a la mediatriz del segmento \overline{BC} .

Los triángulos rectángulos $\stackrel{\scriptscriptstyle \Delta}{\mathsf{AEB}}$, $\stackrel{\scriptscriptstyle \Delta}{\mathsf{DOB}}$ son semejantes. Aplicando el teorema de Tales:

$$\frac{1}{1+x} = \frac{\overline{OB}}{1} \tag{1}$$

Los triángulos rectángulos $\overset{\vartriangle}{\mathsf{CAB}}$, $\overset{\vartriangle}{\mathsf{DOB}}$ son semejantes. Aplicando el teorema de Tales:

$$\frac{\overline{OB}}{1} = \frac{1+x}{2 \cdot \overline{OB}} \tag{2}$$


Substituyendo la expresión (1) en la expresión (2):

$$\frac{\frac{1}{1+x}}{1} = \frac{1+x}{2\frac{1}{1+x}}$$

Simplificando:

 $(1+x)^3 = 2$. Resolviendo la ecuación:

$$x = \sqrt[3]{2} - 1$$
.

