Problema 716.-

Dado el triángulo PAB, sea M el punto medio de AB.

Encuentra el lugar geométrico de los puntos P del plano tales que PM es media proporcional de PA y PB.

Real, M. (2011): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Consideramos en general un triángulo ABC. Supongamos que a>b.

La mediana m_c , relativa al Vértice C, verifica la relación $2m_c^2=a^2+b^2-\frac{c^2}{2}$ (I).

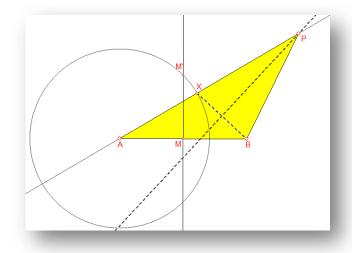
Si además m_c es media proporcional de PA y PB entonces $m_c^2 = a.b \ (II)$.

De ambas relaciones (I) y (II) obtenemos que
$$2a$$
. $b=a^2+b^2-\frac{c^2}{2} \to (a-b)^2=\frac{c^2}{2} \to a-b=\frac{c}{\sqrt{2}}$

Por tanto el vértice C=P pertenecerá a la hipérbola de focos A y B y cuya diferencia de distancias, a dichos Focos es igual a d= $\frac{AB}{\sqrt{2}}$.

Su construcción.

1.- Dado el segmento AB, determinamos M. punto medio de dicho segmento.



- 2.- Sobre la mediatriz de AB fijamos el punto M' tal que MM'=MB=MA.
- 3.- Tomamos un punto cualquiera X sobre la Circunferencia de Centro A y radio AM'.
- 4.- Sea P, punto donde la mediatriz XB intercepta a la recta AX.
- 5.- Lugar geométrico del punto P respecto del punto X:

Hipérbola de focos A y B y cuya diferencia de distancias, a dichos Focos es igual a d= $\frac{AB}{\sqrt{2}}$.

