Problema 716.

Dado el triángulo \overrightarrow{PAB} , sea M el punto medio del [AB]. Determinar e lugar geométrico de los puntos P del plano tal que [AB] es media proporcional de [AB] y [AB] [AB].

Solución 2:

 \overline{PM} es mediana del triángulo \overrightarrow{PAB} .

$$\overline{PM}^2 = \frac{1}{4} \left(2\overline{PA}^2 + 2\overline{PB}^2 - \overline{AB}^2 \right)$$

$$\overline{PM}^2 = \overline{PA} \cdot \overline{PB}$$
.

$$\begin{split} &\left(\overline{PA} - \overline{PB}\right)^2 = \overline{PA}^2 + \overline{PB}^2 - 2\overline{PA} \cdot \overline{PB} = \\ &= \overline{PA}^2 + \overline{PB}^2 - 2\overline{PM}^2 = \\ &= \overline{PA}^2 + \overline{PB}^2 - \frac{1}{2} \left(2\overline{PA}^2 + 2\overline{PB}^2 - \overline{AB}^2 \right) \end{split}$$

Entonces $(\overline{PA} - \overline{PB})^2 = \frac{1}{2} \overline{AB}^2$.

$$\left|\overline{PA} - \overline{PB}\right| = \frac{\sqrt{2}}{2}\,\overline{AB}\,.$$

P recorre una hiperbola de focos A, B y eje $\frac{\sqrt{2}}{2}\overline{AB}$.