Problema 717

a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A' y B' respectivamente.

Hallar el lugar geométrico de los puntos comunes a las rectas AB' y BA' que se obtienen al variar dicha paralela.

Martínez, J. (1969): Elementos de Matemáticas. (p. 530)

Propuesta complementaria.

b) En un triángulo rectángulo OAB una recta s perpendicular a la hipotenusa corta a los catetos OA y OB en los puntos A' y B' respectivamente.

Hallar el lugar geométrico de los puntos comunes a las rectas AB' y BA' que se obtienen al variar dicha perpendicular.

- a1) Hallar el lugar de los puntos comunes a las rectas AB' y BA' si ABC es acutángulo, y r es paralela a AB, cortando a los lados CA y CB en los puntos A' y B' respectivamente.
- a2) Hallar el lugarde los puntos comunes a las rectas AB' y BA' si ABC es obtusángulo, y r es paralela a AB, cortando a los lados CA y CB en los puntos A' y B' respectivamente.
- b1) En un triángulo acutángulo CAB una recta s perpendicular a AB corta a los lados CB y CA en los puntos B' y A' respectivamente.

Hallar el lugar geométrico de los puntos comunes a las rectas AB' y BA' que se obtienen al variar dicha perpendicular.

b2) En un triángulo obtusángulo en C , CAB, una recta s perpendicular a AB corta a los lados CB y CA en los puntos B' y A' respectivamente.

Hallar el lugar geométrico de los puntos comunes a las rectas AB' y BA' que se obtienen al variar dicha perpendicular.

c) En un triángulo acutángulo trazamos una recta s perpendicular a BC, que corta a los lados CB y CA en los puntos B' y A' respectivamente.

Hallar el lugar geométrico de los puntos comunes a las rectas AB' y BA' que se obtienen al variar dicha perpendicular.

c1) En un triángulo obtusángulo en A, trazamos una recta s perpendicular a BC, que corta a los lados CB y CA en los puntos B' y A' respectivamente.

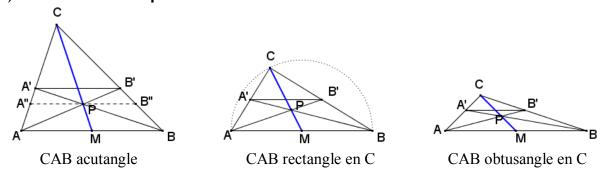
Hallar el lugar geométrico de los puntos comunes a las rectas AB' y BA' que se obtienen al variar dicha perpendicular.

Barroso, R. (2014): Comunicación personal.

Solution proposée par Philippe Fondanaiche

Nous allons traiter le problème en deux parties selon que les points A' et B' sont à l'intersection des côtés CA et CB avec une droite parallèle au côté AB ou avec une droite perpendiculaire à ce même côté:

1) on trace une droite parallèle au côté AB



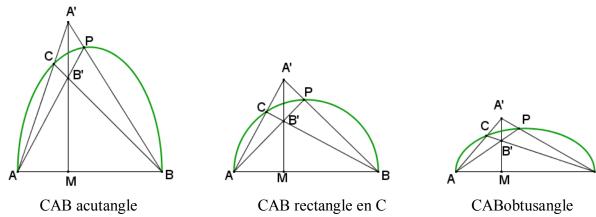
Les trois figures ci-dessus illustrent les trois configurations possibles : CAB est acutangle ou est rectangle en C ou est obtusangle en C.

Quelle que soit la nature du triangle CAB, le lieu du point P quand A' parcourt CA (ou B' parcourt BC) est la **médiane CM du triangle CAB**.

En effet, traçons la parallèle à AB passant par P, qui coupe CA et CB en A'' et B''. D'après le théorème de Thalès A''P/A'B' = AA''/AA' = BB''/BB' = B''P/A'B'.

Il en résulte A''P = B''P quelle que soit la position de A' et donc de A'' sur CA. Le point P est donc le milieu du segment A''B'' et parcourt la médiane CM.

2) on trace une droite perpendiculaire au côté AB passant par M, point courant de AB.



Les trois figures ci-dessus illustrent les trois configurations possibles : CAB est acutangle ou est rectangle en C ou est obtusangle en C.

Quand M parcourt AB, le lieu du point P est généralement (CAB acutangle - 1ère figure- ou obtusangle - 3ème figure-) une **demi-ellipse passant par les points C,A et B**, qui se ramène au **demi-cercle de diamètre AB** si le triangle CAB est rectangle en C (voir 2ème figure).

Démonstration: dans un repère orthonormé, on prend l'origine en A, sans perte de généralité le point B de coordonnées (1,0) et le point C de coordonnées (c,h). Le point courant M sur AB a pour coordonnées (u,0) avec $0 \le u \le 1$. On pose v = (1-u)/u.

Les coordonnées de A' et B' sont respectivement [u, hu/c] et [u, h(1-u)/(1-c)].

La droite AC a pour équation y = hx/c et la droite BC : y = -h(x-1)/(1-c)

On en déduit :

équation de la droite AB': y = hvx/(1-c) et équation de la droite BA': y = -h(x-1)/cvLe point P est à l'intersection des droites AB' et BA'. Après élimination du terme v dans les deux équations précédentes, on obtient la relation en x,y qui définit le lieu de P:

 $(x-1/2)^2 + ky^2 = 1/4$ avec $k = d(1-d)/h^2 \ge 0$.

Il s'agit bien d'une demi-ellipse qui admet l'axe des abscisses et la droite x = 1/2 comme axes de symétrie et qui passe par les points C,A et B.

Quand CAB est rectangle en C, on a $d(1-d) = h^2$ et l'ellipse devient le demi-cercle d'équation $\mathbf{x^2 + y^2} = 1/4$. Dans ce dernier cas, la démonstration peut se faire directement. Comme AM est perpendiculaire à AB et que BC est perpendiculaire à AA', le point B' (ou le point A' selon la position de M par rapport à la projection de C sur AB) est l'orthocentre du triangle AA'B (ou du triangle ABB'). AP et BP sont donc perpendiculaires. Le triangle PAB est rectangle en P quelle que soit la position de M.